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Mathematics 2/3 Unit Syllabus — Years 11–12

Course Description (2 Unit)

The Mathematics 2 Unit Syllabus has been divided into a Preliminary course and an
HSC course as follows:

Note: Numbers given are syllabus references.

Preliminary Course

Basic arithmetic and algebra (1.1–1.4)

Real functions (4.1–4.4)

Trigonometric ratios (5.1–5.5)

Linear functions (6.1–6.5, 6.7)

The quadratic polynomial and the

parabola (9.1–9.5)

Plane geometry – geometrical
properties (2.1–2.4)

Tangent to a curve and derivative of a
function (8.1–8.9)

HSC Course

Coordinate methods in geometry (6.8)

Applications of geometrical properties
(2.5)

Geometrical applications of
differentiation (10.1–10.8)

Integration (11.1–11.4)

Trigonometric functions (including
applications of trigonometric ratios)
(13.1–13.6, 13.7)

Logarithmic and exponential functions
(12.1–12.5)

Applications of calculus to the
physical world (14.1–14.3)

Probability (3.1–3.3)

Series (7.1–7.3) and
Series applications (7.5)
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Course Description (3 Unit)

The Mathematics 3 Unit Syllabus has been divided into a Preliminary course and an
HSC course as follows:

Notes

Applications of geometrical properties (from the HSC 2 Unit course) will need to be
taught before the Preliminary 3 Unit Circle Geometry topic.

Numbers given are syllabus references. 

Preliminary Course

Other inequalities (1.4 E)

Circle geometry (2.6–2.10)

Further trigonometry (sums and 
differences, t formulae, identities and
equations) (5.6–5.9)

Angles between two lines (6.6)

Internal and external division of lines
into given ratios (6.7 E)

Parametric representation (9.6)

Permutations and combinations (18.1)

Polynomials (16.1–16.3)

Harder applications of the Preliminary 2
Unit course

HSC Course

Methods of integration (11.5)

Primitive of sin 2x and cos 2x (13.6 E)

Equation = k(N – P) (14.2 E)

Velocity and acceleration as a function
of x (14.3 E)

Projectile motion (14.3 E)

Simple harmonic motion (14.4)

Inverse functions and inverse
trigonometric functions (15.1–15.5)

Induction (7.4)

Binomial theorem (17.1–17.3)

Further probability (18.2)

Iterative methods for numerical
estimation of the roots of a polynomial
equation (16.4)

Harder applications of HSC 2 Unit topics
(including 10.5 E, 13.4 E, 14.1 E)

dN
dt
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Mathematics Syllabus
3 Unit and 2 Unit Courses

Introduction

The Board recognises that the aims and objectives of the syllabus may be achieved in a
variety of ways and by the application of many different techniques. Success in the
achievement of these aims and objectives is the concern of the Board which does not,
however, either stipulate or evaluate specific teaching methods.

The 2 Unit Course

The content and depth of treatment of this course as specified in Part A and Part B
indicate that it is intended for students who have completed the School Certificate
mathematics course and demonstrated general competence in all the skills included in
that course.

The 2 Unit course is intended to give these students an understanding of and
competence in some further aspects of mathematics which are applicable to the real
world.

The course has general educational merit and is also useful for concurrent studies in
science and commerce. It is a sufficient basis for further studies in mathematics as a
minor discipline at tertiary level in support of courses such as the life sciences or
commerce. Students who require substantial mathematics at a tertiary level supporting
the physical sciences, computer science or engineering should undertake the 3 or 4 Unit
courses.

The 3 Unit Course

The content of this course, which includes the whole of the 2 Unit course, and its depth
of treatment as specified in Part A and Part B indicate that it is intended for students
who have demonstrated a mastery of the skills included in the School Certificate
mathematics course and who are interested in the study of further skills and ideas in
mathematics.

The 3 Unit course is intended to give these students a thorough understanding of, and
competence in, aspects of mathematics including many which are applicable to the real
world.

The course has general educational merit and is also useful for concurrent studies of
science, industrial arts and commerce. It is a recommended minimum basis for further
studies in mathematics as a major discipline at a tertiary level, and for the study of
mathematics in support of the physical and engineering sciences. Although the 3 Unit
course is sufficient for these purposes, it is recommended that students of outstanding
mathematical ability should consider undertaking the 4 Unit course.



Objectives

Specific objectives of the course are:

(a) to give an understanding of important mathematical ideas such as variable,
function, limit, etc, and to introduce students to mathematical techniques
which are relevant to the real world;

(b) to understand the need to prove results, to appreciate the role of deductive
reasoning in establishing such proofs, and to develop the ability to
construct these proofs;

(c) to enhance those mathematical skills required for further studies in
mathematics, the physical sciences and the technological sciences.

For achievement of these aims, the following points are important:

(i) Understanding of the basic ideas and precise use of language must be
emphasised;

(ii) A clear distinction must be made between results which are proved,
and results which are merely stated or made plausible;

(iii) Where proofs are given, they should be carefully developed, with
emphasis on the deductive processes used;

(iv) Attaining competence in mathematical skills and techniques requires
many examples, given as teaching illustrations and as exercises to be
undertaken independently by the student;

(v) Since the course is to be ‘useful for concurrent studies of science,
industrial arts and commerce’ students could be given some
experience in applying mathematics to problems drawn from such
areas. Realistic problems should follow the attainment of skills, and
techniques of problem solving should be continually developed.

Scope and organisation of the syllabus

This syllabus is constructed on the assumption that students have acquired competence
in the various mathematical skills related to the content of the mathematics course for
the School Certificate. In particular it is expected that some familiarity with the
material specified in the first few topics will have been gained. Nevertheless, the
content of all topics listed in this syllabus is expected to be covered in the teaching of
the course.

The order of topics in this syllabus is an indication of the connections among them, but
is not prescriptive. Teachers are advised to familiarise themselves with the syllabus as a
whole before planning a teaching program.

Part B of this syllabus is written for teachers and is intended to clarify the
mathematical ideas underlying the whole syllabus and the various topics and to
indicate the depth of treatment required. The methods and examples contained in them
are not intended as a paradigm; it is the responsibility of each teacher to decide on
matters such as the method of presentation of a topic and the setting out of examples.
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The syllabus for the 2 Unit course is wholly contained in the following syllabus and
consists of all those items not preceded by the letter ‘E’. All ‘E’ (for ‘Extension’) items
have been enclosed within ‘boxes’ for ease of identification. The 3 Unit course syllabus
is the entire syllabus, and the 3 Unit student may be required to tackle harder problems
on 2 Unit topics. A deeper treatment of common material is often appropriate for 3
Unit students.

All proofs given in the syllabus are expected to be discussed and treated as a normal
part of the exposition, except where Part B indicates a lighter treatment. Students are
not required to reproduce proofs of results contained in items preceded by the symbol
† except where Part B indicates that 3 Unit students are expected to be able to do so.

It is assumed that electronic calculators will be available and used throughout the
course.

9
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Part A – Statement of Syllabus Topics

Explanation of symbols

†: denotes that students are not required to reproduce proofs of results contained in
items preceded by this symbol, except where Part B indicates that 3 Unit
candidates are expected to be able to do so.

E: denotes that the following item or items (enclosed within a box) are not included
in the 2 Unit course.

1. Basic Arithmetic and Algebra

1.1 Review of arithmetical operations on rational numbers and quadratic surds.
† 1.2 Inequalities and absolute values.

1.3 Review of manipulation of and substitution in algebraic expressions,
factorisation, and operations on simple algebraic fractions.

1.4 Linear equations and inequalities. Quadratic equations. Simultaneous
equations.

E Other inequalities.

2. Plane Geometry

2.1 Preliminaries on diagrams, notation, symbols and conventions.

2.2 Definitions of special plane figures.
† 2.3 Properties of angles at a point and of angles formed by transversals to

parallel lines. Tests for parallel lines.

Angle sums of triangles, quadrilaterals and general polygons.

Exterior angle properties.

Congruence of triangles. Tests for congruence.

Properties of special triangles and quadrilaterals. Tests for special
quadrilaterals.

Properties of transversals to parallel lines.

Similarity of triangles. Tests for similarity.

Pythagoras’ theorem and its converse.

Area formulae.

2.4 Application of above properties to the solution of numerical exercises
requiring one or more steps of reasoning.

2.5 Application of above properties to simple theoretical problems requiring
one or more steps of reasoning.
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E 2.6 Harder problems extending 2.4 and 2.5.

2.7 Definitions of terms related to circles.
† 2.8 Simple angle properties of a circle.

2.9 Derivation of further angle, chord and tangent results.

2.10 Applications of 2.2, 2.3, 2.7, 2.8 and 2.9 to numerical and theoretical
problems requiring one or more steps of reasoning.

3. Probability

3.1 Random experiments, equally likely outcomes;
probability of a given result.

3.2 Sum and product of results.

3.3 Experiments involving successive outcomes;
tree diagrams.

4. Real Functions of a Real Variable and their Geometrical
Representation

4.1 Dependent and independent variables. Functional notation. Range and
domain.

4.2 The graph of a function. Simple examples.

4.3 Algebraic representation of geometrical relationships.
Locus problems.

4.4 Region and inequality. Simple examples.

5. Trigonometric Ratios – Review and Some Preliminary Results

† 5.1 Review of the trigonometric ratios, using the unit circle.

† 5.2 Trigonometric ratios of: – θ, 90° – θ, 180° ± θ, 360° ± θ.

5.3 The exact ratios.

5.4 Bearings and angles of elevation.
† 5.5 Sine and cosine rules for a triangle. Area of a triangle, given two sides and

the included angle.

E 5.6 Harder applications of 5.3, 5.4 and 5.5.

5.7 Trigonometric functions of sums and differences of angles.

5.8 Expressions for sin θ, cos θ and tan θ in terms of tan ( ).

5.9 Simple trigonometric identities and equations.
The general solution of trigonometric equations.

θ
2
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6. Linear Functions and Lines

6.1 The linear function y = mx + b and its graph.

6.2 The straight line: equation of a line passing through a given point with
given slope; equation of a line passing through two given points; the
general equation ax + by + c = 0; parallel lines; perpendicular lines.

6.3 Intersection of lines: intersection of two lines and the solution of two linear
equations in two unknowns; the equation of a line passing through the
point of intersection of two given lines.

6.4 Regions determined by lines: linear inequalities.
† 6.5 Distance between two points and the (perpendicular) distance of a point

from a line.

E 6.6 The angle between two lines.

6.7 The mid-point of an interval.

E Internal and external division of an interval in a given ratio.

6.8 Coordinate methods in geometry.

7. Series and Applications

7.1 Arithmetic series. Formulae for the nth term and sum of n terms.

7.2 Geometric series. Formulae for the nth term and sum of n terms.

7.3 Geometric series with a ratio between –1 and 1. The limit of xn, as n → ∞,
for | x | < 1, and the concept of limiting sum for a geometric series.

E 7.4 Mathematical induction. Applications.

7.5 Applications of arithmetic series.

Applications of geometric series: compound interest, simplified hire
purchase and repayment problems.

Applications to recurring decimals.

12
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8. The Tangent to a Curve and the Derivative of a Function

8.1 Informal discussion of continuity.

8.2 The notion of the limit of a function and the definition of continuity in
terms of this notion. Continuity of f + g, f – g, fg in terms of continuity of
f and g.

8.3 Gradient of a secant to the curve y = f(x).

8.4 Tangent as the limiting position of a secant. The gradient of the tangent.
Equations of tangent and normal at a given point of the curve y = f(x).

8.5 Formal definition of the gradient of y = f(x) at the point where x = c.

Notations f '(c), at x = c.

8.6 The gradient or derivative as a function.

Notations f '(x), , (f(x)), y'

8.7 Differentiation of xn for positive integral n.
The tangent to y = xn.

† 8.8 Differentiation of and x–1 from first principles. For the two functions
u and v, differentiation of Cu (C constant), u + v, u – v, uv. The composite
function rule. Differentiation of u/v.

† 8.9 Differentiation of: general polynomial, xn for n rational, and functions of
the form {f(x)}n or f(x)/g(x), where f(x), g(x) are polynomials.

9. The Quadratic Polynomial and the Parabola

9.1 The quadratic polynomial ax2 + bx + c. Graph of a quadratic function.
Roots of a quadratic equation. Quadratic inequalities.

9.2 General theory of quadratic equations, relation between roots and
coefficients. The discriminant.

9.3 Classification of quadratic expressions; identity of two quadratic
expressions.

9.4 Equations reducible to quadratics.

9.5 The parabola defined as a locus. The equation x2 = 4Ay. Use of change of
origin when vertex is not at (0, 0).

E 9.6 Parametric representation. Applications to problems concerned with
tangents, normals and other geometric properties.

x
1

2

d

dx
dy

dx

dy

dx
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10. Geometrical Applications of Differentiation

10.1 Significance of the sign of the derivative.

10.2 Stationary points on curves.

10.3 The second derivative. The notations f"(x), , y".

10.4 Geometrical significance of the second derivative.

10.5 The sketching of simple curves.

10.6 Problems on maxima and minima.

10.7 Tangents and normals to curves.

10.8 The primitive function and its geometrical interpretation.

11. Integration

† 11.1 The definite integral.

† 11.2 The relation between the integral and the primitive function.

† 11.3 Approximate methods: trapezoidal rule and Simpson’s rule.

11.4 Applications of integration: areas and volumes of solids of revolution.

E 11.5 Methods of integration, including reduction to standard forms by very
simple substitutions.

12. Logarithmic and Exponential Functions

12.1 Review of index laws, and definition of ar for a > 0, where r is rational.

† 12.2 Definition of logarithm to the base a. Algebraic properties of logarithms
and exponents.

† 12.3 The functions y = ax and y = logax for a > 0 and real x. Change of base.

† 12.4 The derivatives of y = ax and y = logax. Natural logarithms and
exponential function.

12.5 Differentiation and integration of simple composite functions involving
exponentials and logarithms.

d 2y

dx 2
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13. The Trigonometric Functions

13.1 Circular measure of angles. Angle, arc, sector.

13.2 The functions sin x, cos x, tan x, cosec x, sec x, cot x and their graphs.

13.3 Periodicity and other simple properties of the functions sin x, cos x and
tan x.

13.4 Approximations to sin x, cos x, tan x, when x is small. 

The result lim = 1.
x➝0

† 13.5 Differentiation of cos x, sin x, tan x.

13.6 Primitive functions of sin x, cos x, sec2x.

E Primitive functions of sin2x and cos2x.

13.7 Extension of 13.2 – 13.6 to functions of the form a sin(bx + c), etc.

14. Applications of Calculus to the Physical World

14.1 Rates of change as derivatives with respect to time.

The notation , , etc.

† 14.2 Exponential growth and decay; rate of change of population;

the equation = kN, where k is the population growth constant.

E The equation = k (N – P), where k is the population growth constant,

and P is a population constant.

14.3 Velocity and acceleration as time derivatives. Applications involving:

(i) the determination of the velocity and acceleration of a particle given
its distance from a point as a function of time;

(ii) the determination of the distance of a particle from a given point,
given its acceleration or velocity as a function of time together with
appropriate initial conditions.

E Velocity and acceleration as functions of x.

Applications in one and two dimensions (projectiles).

E 14.4 Description of simple harmonic motion from the equation

x = a cos (nt + α), a > 0, n > 0.

The differential equation of the motion.

dN

dt

dN

dt

˙̇xẋ

sin x

x

15

Mathematics 2/3 Unit Syllabus — Years 11–12



E 15. Inverse Functions and the Inverse Trigonometric Functions

15.1 Discussion of inverse function. The functions y = logax
and y = ax as inverse functions. The relation

. = 1.

15.2 The inverse trigonometric functions.

15.3 The graphs of sin–1x, cos–1x, tan–1x.

15.4 Simple properties of the inverse trigonometric functions.

15.5 The derivatives of sin–1(x/a), cos–1(x/a), tan–1(x/a), and the
corresponding integrations.

E 16. Polynomials

16.1 Definitions of polynomial, degree, polynomial equation. Graph of
simple polynomials.

16.2 The remainder and factor theorems.

16.3 The roots and coefficients of a polynomial equation.

16.4 Iterative methods for numerical estimation of the roots of a
polynomial equation.

E 17. Binomial Theorem

17.1 Expansion of (1 + x)n for n = 2, 3, 4 …
Pascal Triangle.
Proof of the Pascal Triangle relations.
Extension to the expansion (a + x)n.

† 17.2  Proof by Mathematical Induction of the formula for 

(also denoted by ).

17.3 Finite series and further properties of binomial coefficients.

E 18. Permutations, Combinations and Further Probability

18.1 Systematic enumeration in a finite sample space.

Definitions of , (also written ).

18.2 Binomial probabilities and the binomial distribution.

n

r
⎛
⎝
⎜
⎞
⎠
⎟

n
C
r

n
P
r

n

k
⎛
⎝
⎜
⎞
⎠
⎟

n
C
k

dx

dy

dy

dx
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Part B

Additional Information

on

Syllabus Content

The material in this part of the syllabus contains suggestions for teachers as to the
appropriate depth of treatment of, and some approaches to, topics in the syllabus. These
suggestions are not intended to be prescriptive or definitive, nor is the amount of material
on any topic an indication of the proportion of available time to be devoted to it.

The examples used in this part are illustrations only and are not intended to be
exclusive indicators of likely examination questions.
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1. Basic Arithmetic and Algebra

It is expected that this topic will receive continual attention over the two years,
particularly through applications in other topics. It is left to the teacher’s
discretion whether to begin treatment of this entire topic immediately or to treat
sections as the need arises in conjunction with other topics.

A distinction should be made between exact answers such as or , and

approximate answers which may be obtained when using
tables or a calculator.

1.1 The following are included in this section.

(i) Addition, subtraction, multiplication and division of fractions and
decimals.

(ii) Conversion of fractions (rational numbers) to decimals and
percentages, and vice versa. Students should be aware that a fraction
(rational number) can be expressed as a terminating or repeating
decimal and that conversely such decimals represent rational
numbers. Repeating decimals may be converted to fractions by the
method of removing the first period.

Example: express as a fraction.

Let x = ,

then 100x =

= 12 + x,

so x =

= .
Generally, if x = ṙ is a recurring decimal with period length P, then

10P x = r + ṙ

so (10P – 1)x = r.

The method should also be applied to numbers such as .

An alternative method is given in Topic 7.

(iii) Determination of powers and roots, eg:

(2 )3; (0.8)2; ; .1.446 1
4

1
3

3.51̇2̇

4
33

12
99

12.1̇2̇

0.1̇2̇

0.1̇2̇

23
7
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(iv) Scientific notation and approximation. Interpretation of calculator
output, rounding off to a given number of significant figures or
decimal places, eg:

5 230 100 = 5 230 000 or 5.230 × 106 (correct to 4
significant figures),

0.052 073 = 0.0521 (correct to 4 decimal places)
= 0.052 07 (correct to 4 significant figures).

In order to give an answer to a series of computations to a given
accuracy, at least one additional figure must be used at each step of
the computation and in obtaining the final answer, before rounding
off.

(v) Evaluation of expressions involving combinations of parentheses,
powers, roots and the four operations, eg:

evaluate √(52 + 72), correct to two decimal places;

find the exact value of .

(vi) Quadratic surds — the four operations, with division done by
rationalising the denominator, eg:

show that is rational.

Surdic equations and square roots of binomial surds are not included
in this syllabus.

1.2 Inequalities should be reviewed, especially the effect of multiplication and
division by negative numbers.

The absolute value | a | equals a for a ≥ 0, and –a for a < 0.

The result | a | = | a | . | b | is important.

The result (the ‘triangle inequality’) | a + b | ≤ | a | + | b | should be
derived.

The geometric interpretation of | x | as the distance of x from the origin,
and more generally, of | x – y | as the distance between x and y (on the
number line).

Simple graphs involving absolute values (see Topic 4.2).

1.3 Attention should be given to the following matters.

(i) Simplification by removal of grouping symbols and
collecting like terms, eg:

–5x – 3 (2x + 1); 4 (x2 + 5x – 7) – 3 (2x2 – 7x + 1).

4
2 + 5

−
1

9 − 4 5

2
5 + 2

3

1− 4
15
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The addition, subtraction and multiplication of algebraic
expressions, eg:

remove the parentheses from (2x + 3) (x2 + 5x + 2);
subtract 5x + 2y – 3 from x – 7y + 9.

(ii) Substitution

Evaluation of expressions involving the four operations, powers and
roots. Numbers substituted may be integers, fractions, decimals or
surds, eg:

find the exact value of t4 – t2 + 1 when t = 2 ;

find the exact value of

where A = , B = , C = .

Problems involving substitution of numerical values into common
formulae should be practised, eg:

given that V = πr2h, find the exact value
of h, when V = 10, r = 2;

find t given that s = ut + at2, a = 4,

u = –4, and s = 6.

(iii) Factorisation

Common factor, eg: 5x2 – 10x = 5x(x – 2).

Difference of two squares, eg:

16x2 – 1 = (4x + 1) (4x – 1).

Trinomials, eg: t2 – 4t + 4 = (t – 2)2;

3x2 + 4x – 7 = (3x + 7) (x – 1).

Grouping of terms to involve the other types of factorisation, eg:

ax + ay – cx – cy = a (x + y) – c (x + y)

= (x + y) (a – c)

x2 – y2 + 2x –2y = (x – y) (x + y) + 2 (x – y)

= (x – y) (x + y + 2).

The sum and difference of two cubes, eg:

x3 + 8 = (x + 2) (x2 – 2x + 4).

1
2

8
3( )74

3( )42
3( )2A C

B

4

4

3
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(iv) Algebraic Fractions

Reduction, eg:

Multiplication and division, eg:

Addition and subtraction, eg:

1.4 The following are included in this section.

(i) Linear equations, such as:

5t + 3 = 2(1 – t); 

(ii) Linear inequalities, their solution and description on a number line,
including problems involving absolute values, but not with the
unknown in a denominator, eg:

find the values of x for which:

(a) 3x + 4 > 2 ; (b) 3 – 2x ≤ –1; (c) | x – 1 | < 2.

(iii) Quadratic equations, including solution by
factorisation and by formula, eg:

5x2 – 11x + 2 = 0; 8t2 = 1 – 10t.

y2 = 6y; (v – 2)2 = 16.

(iv) Simultaneous equations, only to the extent required by later topics.
Students should always check the results by direct substitution in the
original equations.

E (v) Other inequalities. 3 Unit students will be expected to be able to
solve inequalities such as:

x

x

t

t

2 1
0

2 1

2
1

−
>

+

−
>;  .

1
2

3 1

5 1

3 2

5 2

x

x

x

x

−

+
=

−

+
.

3 4
2

x

x

+
= ;

2 3

2x x x
−

+( )
.

2

3

3

6

m n m n−
−

−
;

3

2

3

42a

a

a−
÷

+

−
.

5

2 10

5 6

2

2a b

b a

x x

x

−

−

− +

−
;  .
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2. Plane Geometry
A knowledge of the various common geometrical figures and their properties is
expected of all students. Further objectives in this topic are the development of
understanding of the notions of congruence and similarity, the use of tests for
congruence or similarity and the ability to use simple information combined with
a few steps of reasoning to deduce additional information.

Students will be expected to be able to understand and use sketch diagrams and
information shown on them. They will also be expected to be able to draw sketch
diagrams from given data.

It is anticipated that the contents of this topic will be reviewed if changes occur
in the teaching of geometry in the junior school.

2.1 Standard notation for points, lines and angles (including ∠ABC,
should be known, as should the meanings of phrases like right angle,
collinear points, foot of perpendicular etc. In describing a quadrilateral or
polygon, the vertices should be given in cyclic order. The notation AB may
be used to describe a line, line segment (interval), ray or the length of the
corresponding interval, and the context used to determine meaning. For
example, AB = CD is a reference to lengths and AB CE is a reference to
lines or intervals. The statement ‘X is a point on AB produced’ means that
the line segment AB is extended beyond B and that X is some point on this
extension.

Acceptable symbols include the following:

is parallel to || is similar to |||

is perpendicular to therefore

is congruent to because

2.2 Definitions should be given of isosceles and equilateral triangles and of
quadrilaterals including the standard special types (parallelogram,
rectangle, square, rhombus and trapezium). A parallelogram should be
defined as a quadrilateral with both pairs of opposite sides parallel and a
rectangle as a parallelogram with one angle a right-angle. A rhombus is a
parallelogram with a pair of adjacent sides equal and a square is a rectangle
with a pair of adjacent sides equal. A regular polygon should be defined as
a polygon with all sides equal and all angles equal.

2.3 It is expected that the material in this section will be developed in a logical
order, with proofs being provided both for general results and for all
examples. The setting out of arguments (information given, results to be
proved and steps in the argument with reasons for them) is to be
demonstrated frequently and practice given in its use. Any result may be
used by students in the proofs of subsequent exercises as long as specific
mention is made of it in the solution of the exercise.

Properties that students should encounter include the following:

• Properties of angles on a straight line, vertically opposite angles,
angles at a point.

∴≡

∴⊥

⊥

ABC Bˆ ,  ˆ)
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• Definitions of parallel lines, transversal, alternate, corresponding and
cointerior (allied) angles. Properties of these angles. Tests for parallel
lines. The fact that if two lines are parallel to a third line then they
are parallel to one another.

• Exterior angle and angle sum of a triangle. Angle sum of a
quadrilateral and of a general polygon.

• The size of the angles of a general polygon.

• Sum of the exterior angles of a general polygon.

• Definition of congruence of triangles. Statement of tests for
congruence, including test for right-angled triangles.

• Properties of isosceles and equilateral triangles.

• Properties of quadrilaterals:

(a) parallelogram (equality of opposite sides and angles, bisection
of diagonals). Tests for parallelograms (both pairs of opposite
sides parallel, both pairs of opposite angles equal, one pair of
opposite sides equal and parallel, diagonals bisect each other).

(b) rhombus (diagonals bisect each other at right angles, diagonals
bisect the angles through which they pass). Tests for a rhombus
(all sides equal, diagonals bisect at right angles).

(c) rectangle (diagonals are equal).

(d) square.

• The intercept properties of transversals to parallel lines (if a family of
parallel lines cuts equal intercepts on one transversal, it does so on all
transversals).

• Definition of similarity of triangles. Statement of tests for similarity
of triangles (equality of corresponding angles or of two such pairs,
corresponding sides proportional, two pairs of corresponding sides
proportional and equality of the included angles). Parallel lines
preserve ratios of intercepts on transversals. Line parallel to one side
of a triangle divides the other two sides in proportion*.

• A line joining the midpoints of two sides of a triangle is parallel to
the third side and half its length.*

• Pythagoras’ Theorem. Proof using similar triangles. Converse. Area
formulae for parallelogram, triangle, trapezium and rhombus.

* Note: These properties are simple consequences of other listed properties.
They may be derived and quoted in proofs of exercises but are not essential
parts of the syllabus.

2.4, 2.5, 2.6 Problems for both 2 and 3 Unit students may involve the application of
any of the properties treated above. For 2 Unit students, problems should
mainly have diagrams supplied although practice should be given in
sketching a diagram from a given set of data. Problems may be either
numerical or general, with the first type being stressed for 2 Unit
students. In all cases, a geometrical justification for each step will be
required where it is appropriate.
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Sample exercises with solutions are supplied in these notes as an indication of the
clarity of the argument that needs to be demonstrated.

The exercises which students should practise may be of several types.

(i) Simple numerical

Example 1

Find if AB || CD.

Solution

In the figure, AB || CD.

= 73˚ (corresponding to ).

= 73˚ (vertically opposite to ).

Example 2

AB = AC. Find x.

Solution

Since AB = AC then ABC is isosceles.

= 72˚.

x + 144 = 180 (angle sum of ).

x = 36.∴

Δ

ACBˆ∴

Δ

AFGˆEFBˆ∴

CGHˆAFGˆ∴

EFBˆ
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Example 3

Find the size of an interior angle of a regular hexagon.

Solution

Angle sum of an n-sided polygon = (2n – 4) right angles.

∴ Angle sum of a hexagon = 8 right angles

= 720˚.

∴ Size of each angle = 720˚ ÷ 6

= 120˚.

(ii) Numerical but involving a larger number of steps

Example 1 Given AD = AB, DB = DC

and AD || BC, find ∠BDC.

Solution

Let ∠ADB = x˚.

ΔADB is isosceles (AB = AD).

∴ ∠ADB = ∠ADB (base angles of ΔADB).

Then 2x + 100 = 180 (angle sum of ΔADB).

So x = 40,

∴ ∠ADB = 40˚.

Then ∠DBC = 40˚ (alternate to ∠ADB, AD || BC);
but ΔDBC is isosceles (DB = DC).

∴ ∠DBC = 40˚ (base angles of ΔDBC).

∴ ∠BDC = 180˚ – 40˚ – 40˚ (angle sum of ΔDBC)

= 100˚.
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Example 2

In the figure, AP || BC and AB = AC, the lines BP and AC meet at
right angles at X, with ∠PAC = 64˚.

(i) Calculate ∠ABC.

(ii)Find ∠APB and deduce that ∠ABP = 38˚.

Solution

(i) ∠ACB = 64˚ (alternate to ∠PAC, AP || BC).

∴ ∠ABC = 64˚ (base angles of isosceles ΔABC).

(ii) ∠APB + 90˚ + 64˚ = 180˚ (angle sum of ΔAPX).

∴ ∠APB = 26˚.

∠PBC = 26˚ (alternate to ∠APB, AP || BC).

∴ ∠APB = 64˚ – 26˚

= 38˚

Example 3

In the figure, AE = 15 cm, AB = 24 cm, EC = 21 cm and DE || BC.
Find the length of AD.

Solution 1

In Δs ADE, ABC,

∠ADE = ∠ABC (corresponding angles, DE || BC),

∠DAE = ∠BAC (common angle).

∴ ΔADE ||| ΔABC.

Let AD = x cm.

∴ = 

∴ = 

∴ x = 10.

15
36

x
24

AE
AC

AD
AB
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Solution 2

= (ratio property of parallel lines)

= 

∴ 360 – 15x = 21x

x = 10.

(iii) Simple deductions (with or without the diagram supplied)

Example 1

ABCD is a parallelogram,

AX = CW.

Prove XD = BW.

Proof In ΔAXD, ΔBCW

AX = CW (given),

AD = BC (opposite sides of parallelogram are equal),

= (opposite angles of parallelogram are equal)

∴ AXD ΔCWB (S.A.S.).

∴ XD = BW.

E (iv) Harder deductive exercises (with or without diagram supplied)

Example

ABCD is a parallelogram,

AC is produced to Y and CA to X

such that AX = CY.

Prove that XBYD is a parallelogram.

Proof Join diagonal BD. Let BD and AC intersect at O.

Since the diagonals of the parallelogram ABCD bisect each other at
O, DO = OB and AO = OC.

But AX = CY (given),

∴ OX = OY (by addition).

In quadrilateral XBYD, diagonals XY and BD bisect each other.

∴ XBYD is a parallelogram.

≡

BCWˆXADˆ

x
(24 – x)

15
21

AD
DB

AE
EC
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E 2.7 Definitions of circle, centre, radius, diameter, arc, sector, segment, chord,
tangent, concyclic points, cyclic quadrilateral, an angle subtended by an arc
or chord at the centre and at the circumference, and of an arc subtended by
an angle should be given.

Two circles touch if they have a common tangent at the point of contact.

2.8 Assumption: equal arcs on circles of equal radii subtend equal angles at the
centre, and conversely.

The following results should be discussed and proofs given. Reproduction
of memorised proofs will not be required.

Equal angles at the centre stand on equal chords. Converse.

The angle at the centre is twice the angle at the circumference subtended
by the same arc.

The tangent to a circle is perpendicular to the radius drawn to the point of
contact. Converse.

2.9 3 Unit students will be expected to be able to prove any of the following
results using properties obtained in 2.3 or 2.8.

The perpendicular from the centre of a circle to a chord bisects the chord.

The line from the centre of a circle to the midpoint of a chord is
perpendicular to the chord.

Equal chords in equal circles are equidistant from the centres.

Chords in a circle which are equidistant from the centre are equal.

Any three non-collinear points lie on a unique circle, whose centre is the
point of concurrency of the perpendicular bisectors of the intervals joining
the points.

Angles in the same segment are equal.

The angle in a semi-circle is a right angle.

Opposite angles of a cyclic quadrilateral are supplementary.

The exterior angle at a vertex of a cyclic quadrilateral equals the interior
opposite angle.

If the opposite angles in a quadrilateral are supplementary then the
quadrilateral is cyclic (also a test for four points to be concyclic).

If an interval subtends equal angles at two points on the same side of it
then the end points of the interval and the two points are concyclic.

The angle between a tangent and a chord through the point of contact is
equal to the angle in the alternate segment.

Tangents to a circle from an external point are equal.

The products of the intercepts of two intersecting chords are equal.

The square of the length of the tangent from an external point is equal to
the product of the intercepts of the secant passing through this point.

When circles touch, the line of centres passes through the point of contact.

2.10 In applications to problems, any of the definitions given or results obtained
in 2.2, 2.3, 2.7, 2.8 or 2.9 may be used without proof, provided a specific
reference is made to each result so used. If a proof is required for any of
the results in 2.9 then this will be clearly indicated. The following exercises
are given as examples of the types of problems to be discussed.
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E (i) Simple numerical

Example 1 Find x.

Solution x = 110˚ (exterior angle of a cyclic quadrilateral
equals interior opposite angle).

Example 2 TP is a tangent. 
O is the centre. 
OP is 10 cm and 
the radius is 6 cm. 
Find PT.

Solution = 90˚ (angle between a tangent and radius).

Then OT2 + PT2 = OP2 (Pythagoras’ Theorem)

36 + PT2 = 100

∴ PT = 8

PT is 8 cm.

(ii) Numerical but involving several steps

Example AB || CD. O is the centre.
Find y.

Solution

= 65˚ (angle at centre is double angle at circumference).

∴ = 95˚.

= (alternate angles, AB || CD).

y = 95.

(iii) Simple deductions with diagram supplied

Example 1 O is the centre

Prove that AC || BD.

ABDˆBDEˆ

ABDˆ

ABCˆ

OTPˆ
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E

Solution

= 75˚ (angle at centre is double the angle at circumference).

∴ = (both 75˚).

∴ AC || BD (since alternate angles are equal).

(iv) Harder deductions (with or without supplied diagram)

Example 1 A parallelogram ABCD is inscribed in a circle as shown.
Prove that ABCD is also a rectangle.

Data: ABCD is a cyclic
quadrilateral
AB || CD, AD || BC.

Aim: To prove ABCD is a
rectangle.

Proof ∠A = ∠C (opposite angles of a parallelogram);

but ∠A is the supplement of ∠C (ABCD is a cyclic quadrilateral).

∴ ∠A = 90˚,

∴ the figure ABCD is a rectangle (parallelogram with an angle
of 90˚).

Note: There is no one correct form of setting out the reasons.
Alternatives are given below. The important thing is that
reasons are given and that steps follow a logical pattern.

Alternatively

Let the angle A be x˚.

Because ABCD is a parallelogram,

∠C = ∠A = x˚ (opposite angles equal).

Because ABCD is a cyclic quadrilateral,

∠C = 180˚ – x˚ (opposite angles supplementary).

∴ x˚ = 180˚ – x˚,

∴ x˚ = 90˚.

Thus the figure ABCD is a rectangle.

Alternatively

Produce DC to E.

∠BCD = ∠BAD (opposite angle parallelogram),

∠BCE = ∠BAD (exterior angle cyclic quadrilateral),

∴ ∠BCD = ∠BCE.

But, because DCE is a straight line, each is a right angle. Hence the
figure ABCD is a rectangle.

CBDˆACBˆ

ACBˆ
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E
Example 2 Two circles intersect at A and B. AP and AQ are
diameters in the respective circles. Prove that the points P, B, Q are
collinear.

Data: AP and AQ are diameters.

Aim: To prove P, B and Q are collinear.

Proof Join AB.

= 90˚ (angle in a semicircle, AP diameter).

= 90˚ (angle in a semicircle, AQ diameter).

PB and BQ form the one line (adjacent angles supplementary).

3. Probability

Students should be familiar with the common terms used in popular activities
and games, hence examples should be given in pastimes such as playing cards,
Monopoly and backgammon as well as in gaming activities such as lotteries and
raffles, the tossing of coins and the throwing of dice.

3.1 Use everyday examples of ‘random experiments’, such as coin tossing,
throwing dice, drawing raffles or lotteries, dealing cards, to introduce the
ideas of outcomes of experiments, the notion of equally likely outcomes,
and the idea that for experiments having a finite number n of equally likely,
mutually exclusive outcomes E1, …, En, the probability P(A) of a single
result A is given by

P(A) = 

In particular, since one of E1, ..., En must occur,

P(E1) + ... + P(En) = 1,

and for any result A,

0 ≤ P(A) ≤ 1.

Examples

(i) An ordinary die is thrown. Find the probabilities that 
(a) 1 is shown, (b) an odd number is shown.

number of outcomes that produce A

n
.

ABQˆ

ABPˆ
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Solution.
(a) Since the 6 outcomes are equally likely, the probability of the

outcome ‘1 is shown’ is 1/6.

(b) An odd number is shown if and only if any of the outcomes 1,
3, 5 occur. Hence the probability is 3/6 = 1/2.

(ii) A pair of dice are thrown. What is the probability that they show a
total of three?

Solution. Each outcome of the first die is equally likely to occur with
each outcome of the second die. The total number of possible
outcomes is 6 × 6 = 36, each occurring with a probability 1/36. The
outcomes producing a total of three and a 1 and a 2, or a 2 and a 1.
Hence the probability of a total of three is .

(iii) In a raffle, 30 tickets are sold and there is one prize. What is the
probability that someone buying 5 tickets wins the prize?

Solution. The probability that a given ticket wins the prize is 1/30.
Hence the probability of winning with 5 tickets is 5/30 = 1/6.

(iv) A card is drawn randomly from a standard pack of 52 cards. What is
the probability that it is an even-numbered card?

Solution. Of the 52 equally likely outcomes, the drawing of a 2, 4, 6,
8 or 10 of clubs, diamonds, hearts or spades are the outcomes
producing the result. The probability of the result is thus 
(5 × 4)/52 = 5/13.

Practice should be given in calculating the probabilities of various types of
result (both composite and simple) from a knowledge of the probabilities
of the possible outcomes of an experiment.

The complementary result (A does not occur, or ‘not A’) to A should be

defined, the relation P( ) + P(A) = 1 derived, and use made of it in
simple examples.

3.2 In the case of mutually exclusive outcomes A1, A2, the probability that A1
or A2 occurs is the sum of the probabilities that A1, A2 each occur. 
Denoting the result ‘A1 or A2’ by A1 ∪ A2 (called the sum of A1, and A2),

P(A1 ∪ A2) = P(A1) + P(A2), (1)

and generally, for mutually exclusive outcomes A1, …, An ,

P(A1 ∪ … ∪ An) = P(A1) + … + P(An).

Sometimes, two results may occur together (ie they are not mutually
exclusive). For example, in randomly selecting a digit from the digits, 1, 2,
3, 4, 5, 6, 7, 8, 9, if

A is the result ‘an even digit is selected’ and B is the result ‘a digit less 
than 5 is selected’,

then A and B will both occur if 2 or 4 is selected. Denoting the result 
‘A and B’, called the product of A and B, by AB,

P(AB) = 2/9.

A

A

2
36 = 1

18

32

Mathematics 2/3 Unit Syllabus — Years 11–12



A ∪ B occurs if 1, 2, 3, 4, 6 or 8 is selected, thus

P(A ∪ B) = 6/9 = 2/3,

and in this experiment,

P(A ∪ B) ≠ P(A) + P(B) (= 4/9 + 4/9 = 8/9).

This inequality holds because A and B are not mutually exclusive results.
For general results A, B, the formula (1) must be replaced by

P(A ∪ B) = P(A) + P(B) – P(AB), (2)

and it is readily verified that (2) holds in the above example. Practice in the
use of (2) should be given, but formal proofs of (1) or (2) are not required.

3.3 Examples should be given which illustrate the difference between, say,
successive tosses of a coin (where the probabilities of successive outcomes
do not depend on previous outcomes) and the drawing of names from a hat
(where probabilities depend on previous outcomes).

Tree diagrams should be used to trace the possible outcomes of two or
three stage experiments, and hence to calculate the probabilities of certain
final results. Explanation of all steps in the diagram should be given so that
students can construct diagrams, as shown below, directly from given
information.

Examples

(i) 5 boys’ names and 6 girls’ names are in a hat. Find the probability
that in two draws a boy’s name and a girl’s name are chosen. (No
replacement of names after a draw.)

Required probability = P(GB ∪ BG) = 3/11 + 3/11 = 6/11.

(ii) In a raffle, 30 tickets are sold and there are two prizes. What is the
probability that someone buying 5 tickets wins at least one prize?

In this example, we simplify the tree diagram by considering
carefully what it is we are required to find. The required result is
obtained in exactly two exclusive ways: either first prize is won, in
which case it does not matter whether second prize is won or not, or
first prize is not won but second prize is won.
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5/11          B
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Required probability = P(W ∪ LW) = 1/6 + 25/174 = 9/29.

An alternative method is to notice that the probability of winning at
least one prize is the complement of winning no prizes, ie:

Required probability = 1 – P(LL)

= 1 – 25/30 × 24/29

= 1 – 20/29

= 9/29.

(iii) In a mixture of red and white pebbles in a gravel, red and white
pebbles occur in the ratio of 3 to 7. Find the probability that if 3
pebbles are chosen from the mixture, (a) exactly two are red; (b) at
least one is white.

Let p (= 0.3) and q (= 0.7) be respectively the probabilities of
choosing a red or a white pebble. The tree diagram is as follows:

(a) Required probability = P (RRW ∪ RWR ∪ WRR) = 3p2q = 189/1000

(b) Required probability = P (RRW∪ RWR ∪ RWW∪ WRR ∪WRW∪ WWR ∪ WWW)

= 3p2q + 3pq2 + q3

= 973/1000.
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5/30          W

25/30        L

p R RRR p3

q W RRW p2q

p R RWR p2q

q W RWW pq2

p R WRR p2q

q W WRW pq2

p R WWR pq2

q W WWW q3

R

W

R

W

p

q

p

q
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In examples such as (b), it is important to realise that the result is
more readily obtained by calculating the complementary probability
(that none is white) and subtracting from 1. Here, the probability of
obtaining 3 red pebbles is p3, hence the probability of obtaining at
least one white pebble is 1 – p3 = 973/1000.

4. Real Functions of a Real Variable and their Geometrical
Representation

4.1 Much of this course is devoted to the study of properties of real-valued
functions of a real variable. Such a function f assigns to each element x of
a given set of real numbers exactly one real number y, called the value of
the function f at x. The dependence of y on f and on x is made explicit by
using the notation f(x) to mean the value of f at x. The set of real numbers 
x on which f is defined is called the domain of f, while the set of values 
f(x) obtained as x varies over the domain of f is called the range or image
of f. x is called the independent variable since it may be chosen freely
within the domain of f, while y = f(x) is called the dependent variable
since its value depends on the value chosen for x.

The functions f studied in this course are usually given by an explicit rule
involving calculations to be made on the variable x in order to obtain f(x).
For this reason, a function f is often described in a form such as ‘y = f(x)’
with the domain of x specified (eg ‘y = x2 + 1, for –1 <_ x <_ 1’ and referred
to as ‘the function f(x)’ or as ‘the function x2 + 1, –1 <_ x <_ 1’.

It is also common usage to refer to ‘the function f(x)’ where f(x) is
prescribed but no domain is given. In such cases, the understanding
required to be developed is that the domain of f is the set of real numbers
for which the expression f(x) defines a real number. For example, ‘the
function √(1 – x2)’ has domain the interval –1 <_ x <_ 1 and its value at x in
this interval is √(1 – x2); ‘the function ’ has domain all real x except

x = 1; ‘the function ’ has domain all real x except x = 0; ‘the function

x2 + 1’ has domain all real x.

It is important to realise that use of the notation y = f(x) does not imply that
the expression corresponding to f(x) is the same for all x. For example, the
rule

f(x) = x for x >_ 0,

f(x) = –x for x < 0,

defines a function with domain all real x.

The use of x and y is customary and is related to the geometrical
representation of a function f by graphing the set of points (x, f(x)) for x in
the domain of f, using cartesian (x, y) coordinates. Other symbols for
independent and dependent variables occur frequently in practice and
students should become familiar with functions defined in terms of other
symbols.

x

x| |
±

x

x 2 1−
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Examples should be chosen to illustrate the points made above and also
with a view towards illustrating different types of behaviour of functions
and their graphs, which are of importance in later work.

The concept of a function defined on an abstract set and formal definitions
involving such functions are not required in this course.

4.2 The pictorial representation of a function is extremely useful and
important, as is the idea that algebraic and geometrical descriptions of
functions are both helpful in understanding and learning about their
properties.

The function y = f(x) may be represented pictorially by its graph, which is
the set of points (x, f(x)) for each x in the domain of f, indicated with
respect to cartesian coordinate axes OxOy. Denoting the point with
coordinates (x, f(x)) by P, the graph of the function (and sometimes the
function itself) is often referred to as the ‘set of points P(x, f(x))’. Since f is
a function, there is at most one point P of its graph on any ordinate. The
graph of y = f(x) is also called the curve y = f(x) and the part of the curve
lying between two ordinates is called an arc.

Examples of functions y = f(x) should be given which illustrate different
types of domain, bounded and unbounded ranges, continuous and
discontinuous curves, curves which display simple symmetries, curves with
sharp corners and curves with asymptotes.

Students are to be encouraged to develop the habit of drawing sketches
which indicate the main features of the graphs of any functions presented
to them. They should also develop at this stage the habit of checking
simple properties of functions and identifying simple features such as:
where is the function positive? negative? zero?; where is it increasing?
decreasing?; does it have any symmetry properties?; is it bounded?; does it
have gaps (jumps) or sharp corners?; is there an asymptote?

Knowledge of the symmetries of the graphs of odd and even functions is
useful in curve sketching.

A function f(x) is even if f(–x) = f(x) for all values of x in the domain. Its
graph is symmetric with respect to reflection in the y-axis, ie it has line
symmetry about the y-axis.

A function f(x) is odd if f(–x) = –f(x) for all values of x in the domain. Its
graph is symmetric with respect to reflection in the point O (the origin or
axes), ie it has point symmetry about the origin.

4.3 Some of the work of this section might profitably be discussed in
conjunction with Topics 6 and 9. A circle with a given centre C and a
given radius r is defined as the set of points in the plane whose distance
from C is r. If cartesian coordinate axes OxOy are set up in the plane so
that C is the point with coordinates (a, b), then the distance formula shows
that P(x, y) lies on the given circle if and only if x and y satisfy the
equation (x – a)2 + (y – b)2 = r2, hence this equation is an algebraic
representation corresponding to the geometrical description given above.
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It should be noted that if this equation is used to express y as a function
of x, then two functions are obtained: y = b + √(r2 – (x – a)2) and 
y = b – √(r2 – (x – a)2), each with domain a – r <_ x <_ a + r.

Generally, sets of points satisfying simple conditions stated in geometrical
terms can be described in algebraic terms by introducing cartesian
coordinates and interpreting the original conditions as conditions relating 
x and y. The conditions then usually reduce to one or more equations or
inequalities.

Problems involving the determination of the set of points which satisfy a
given number of conditions (which may be expressed geometrically or
algebraically) are called locus problems and often stated in the form ‘Find
the locus of a point P which satisfies …’. This means in practice ‘Find a
simple algebraic or geometric description of the set of all points P which
satisfy …’.

Examples

(i) The locus of all points P in the plane which are at a distance r > 0
from the point C(a, b) is the circle centre C, radius r. Its equation is

(x – a)2 + (y – b)2 = r2.

(ii) The locus whose equation is x2 – y 2 = 0 consists of the points lying
on either of the straight lines y = x, y = –x.

(iii) The locus of points equidistant from two distinct points A and B is
the perpendicular bisector of the segment AB. To find its equation,
choose axes so that A is (a, 0) and B is (–a, 0). The condition that
P(x, y) satisfies AP = PB, and so AP2 = PB2, is

(x – a)2 + y2 = (x + a)2 + y2

which reduces to x = 0, which is the equation of the y-axis.

(iv) A parabola may be defined as the locus of a point whose distance
from a given fixed point (its focus) equals its distance from a given
fixed line (its directrix). Choosing coordinates so that the focus is 
(0, A) and the directrix has equation y = –A, the equation of the
parabola reduces to x2 = 4Ay. The terms focus, directrix, vertex, axis
and focal length should be defined and illustrated with many
examples of parabolas. For any parabola with a vertical or a
horizontal axis, students should be able to derive its coordinate
equation.

In locus problems and in problems involving curves or functions,
students should be required to produce sketch diagrams showing
clearly the main features of the locus, curve or function.

The centre and radius of the circle

x2 + y2 + 2ax + 2by + c = 0 should be found, as should the
vertex and focus of the parabola y = ax2 + bx + c.
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4.4 Treatment is to be restricted to regions of the (cartesian x, y–) plane which
admit a simple geometrical description – for example, by use of words
such as interior, exterior, bounded by, boundary, sector, common to, etc –
and which admit a simple algebraic description using one or more
inequalities in x and y.

Examples should be simple and involve at most one non-linear inequality,
but should include both bounded and unbounded regions. Note that the
case of one or more linear inequalities is specifically listed in Topic 6.4.

A clear sketch diagram, illustrating the relevant regions, should be drawn
for each example.

Regions whose algebraic description involves two or more inequalities
should be understood to correspond to the common part (intersection) of
the regions determined by each separate inequality.

Examples

(i) Indicate using a clear sketch diagram the region determined by the
inequality

(x–3)2 + y2 > 1.

(ii) Find a system of inequalities in x and y whose solutions correspond
exactly to the points of the region of the cartesian x, y-plane lying
inside or on the circle with centre (0,0) and radius 3 but to the right
of the line x = 2. Sketch this region.

(iii) Draw a clear sketch of the region whose boundary consists of
portions of the x-axis, the ordinates at x = 1 and at x = 2, and the
curve y = x2.

(iv) Describe in geometrical terms the planar region whose points (x, y)
satisfy all three inequalities

x2 + y2 <_ 1, y <_ 2x, x >_ 0,

and draw a sketch of this region.

38

Mathematics 2/3 Unit Syllabus — Years 11–12



39

Mathematics 2/3 Unit Syllabus — Years 11–12

5. Trigonometric Ratios — Review and Some Preliminary Results

5.1 Angles of any magnitude should be illustrated with reference to the circle
x2 + y2 = 1. The sine and cosine should be defined for any angle and the
other four ratios expressed in terms of these. Graphs should be drawn
showing these ratios as functions of the angular measure in degrees.

5.2 The relation sin2θ + cos2θ = 1 and those derived from it should be known,
as well as ratios of – θ, 90° – θ, 180° + θ, 360° + θ in terms of the ratios
of θ. Once familiarity with the trigonometric ratios of angles of any
magnitude is attained, some practice in solving simple equations of the
type likely to occur in later applications should be discussed. The following
examples are suitable:

3 + 2 cos x = 15 cos x, 12 sin 2x = 5 sin36°

2 sin x = cos x, 2 sin x = tan x, sec2x = 3

Later, when circular measure is introduced (in the HSC course) similar
examples should be discussed again, eg, ‘find a value of t for which 
2 – 2cos 2t = 0’. Finding all the solutions in specified domains (such as 
0° to 360° or to ) is important in many applications. No complicated

manipulation is intended.

5.3 Ratios for 0°, 30°, 45°, 60°, 90° should be known as exact values. The
exercises given on this section of work should emphasise the use of the
exact ratios.

5.4 The compass bearing measured clockwise from the North and given in
standard three-figure notation (eg 023°) should be treated, as well as
common descriptions such as ‘due East’, ‘South–West’, etc.

Angles of elevation and depression should both be defined, and their use
illustrated.

5.5 The formulae

,

a2 = b2 + c2 – 2bc cos A

should be proved for any triangle. The expression for the area, bc sin A,
should also be proved.

In applications of these formulae, systematic ‘solution of triangles’ is not
required. (This is the type of exercise where the sizes of (say) two sides
and one angle of a triangle are given and the sizes of all other sides and
angles must be found.) The applications should be a means of fixing the
results in the student’s mind, and should be restricted to simple two-
dimensional problems requiring only the above formulae.

Attention must be given to interpreting calculator output where obtuse
angles are required.

1
2

a
A

b
B

c
Csin sin sin= =

π
2

−π
2
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E 5.6 3 Unit students are expected to undertake more difficult problems such as
the following.

(i) The elevation of a hill at a place P due East of it is 48°, and at a
place Q due South of P the elevation is 30°. If the distance from P to
Q is 500 metres, find the height of the hill.

(ii) From a point A the bearings of two points B and C are found to be
333°T and 013°T respectively. From a point D, 5 km due north of A,
the bearings are 301°T and 021°T respectively. By considering the
triangle ABC, show that if the distance between B and C is d km,
then

d2 = 25 .

E 5.7 An easy, yet quite general, method of approach starts by drawing two
points P and Q on the unit circle, P at an angle θ from the positive x-axis,
Q at an angle φ. Let d be the distance from P to Q. We then compute the
square of d in two ways:

(i) From the cosine rule, d2 = 1 + 1 – 2 cos (θ – φ).

(ii) From the cartesian coordinates of P and Q,

d2 = (cosθ – cos φ)2 + (sinθ – sinφ)2.

Equating these two results, we obtain

cos (θ – φ) = cosθ cosφ + sinθ sinφ.

We now use this basic formula to obtain all the other relations. By letting
φ be a negative angle, say φ = –ψ, and by using cos (–ψ) = cosψ,
sin (–ψ) = –sinψ, we obtain cos (θ + ψ) = cosθ cosψ – sinθ sinψ. Next in
the formula for cos (θ – φ), let θ = 90° and obtain sinφ = cos (90° – φ). We
then write sin (θ + φ) in the form 

sin (θ + φ) = cos (90° – (θ + φ)) = cos ((90° – θ) – φ)

to derive

sin (θ + φ) = sinθ cosφ + cosθ sinφ.

Sin (θ – ψ) is obtained by the substitution φ = –ψ. The sum and difference
formulae for the tangent ratio are now obtained from its definition and by
use of the above formulae.

The formulae for cos 2θ, sin 2θ and tan 2θ should be obtained explicitly as
particular cases.

E 5.8 Denoting tan by t, the addition formula for the tangent gives

tanθ = (t ≠ ± 1).

The expressions for cosθ and sinθ in terms of t should also be derived.

2
1 2
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θ
2

sin
sin

sin
sin

sin sin cos
sin sin 59

32

2 21
8

2 59 21 40
32 82°

°
°

°
° ° °

° °( ) + ( ) −⎧
⎨
⎩

⎫
⎬
⎭



41

Mathematics 2/3 Unit Syllabus — Years 11–12

E 5.9 Sum and product formulae for the sine and cosine functions are not
included in the 3 Unit course. The following examples illustrate the types
of problem to be treated:

(i) Show that sin (a + b) sin (a – b) = sin2a – sin2b.

(ii) Find all angles θ for which sin 2θ = cosθ

(The solution is θ = 90° + m × 180° or 30° + m × 360° or 150° + m × 360°,
where m is an arbitrary integer.)

(iii) Find all values of ϕ in the range of 0° ≤ ϕ ≤ 360° for which 
4 cosϕ + 3 sinϕ = 1

The use of the symbol ≡ (is identically equal to) should be understood.

Note: Further practice in the solution of trigonometric equations should be
given after circular measure is treated (Topic 13 of the 2 Unit syllabus).

6. Linear Functions and Lines

6.1 The linear function y = mx + b, for numerical values of m and b, is
represented by a straight line.

The linear equation mx + b = 0 (m ≠ 0) has one and only one root, which is
rational if m and b are rational. This simple and apparently trivial result is
worth noting; it does not extend to the quadratic equation.

6.2 The equation of a line. The geometrical significance of m and b in the
linear equation y = mx + b.

The equation of a straight line passing through a fixed point (x1, y1) and
having a given slope m is y – y1 = m(x – x1).

The equation of a straight line passing through two given points (x1, y1) and
(x2, y2) may be deduced from the above by noting that the slope m must be

the ratio of y2 – y1 to x2 – x1, ie, m = 

Verification that the number pairs (x1, y1) and (x2, y2) do indeed satisfy the
final equation.

The linear equation ax + by + c = 0 represents a straight line provided at
least one of a and b is nonzero.

Parallel lines have the same slope; two lines with gradients m and m'
respectively are perpendicular if and only if mm' = –1.

6.3 If two straight lines intersect in the point (x1, y1), then x and y satisfy the
equation for the first line and the equation for the second line; ie x1 and y1
satisfy two simultaneous linear equations in the two unknowns x and y.

y2 – y1
x2 – x1
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Since we know that two lines need not intersect at all, not all pairs of linear
equations can be solved simultaneously. Geometrically there is a unique
point of intersection if and only if the two lines have different slopes. The
cases where two lines meet, are distinct and parallel, or coincide should be
related to the corresponding pairs of linear equations. For the pair 
a1x + b1y + c1 = 0 and a2x + b2y + c2 = 0, we have:

intersecting lines if ;

parallel lines if ;

coincident lines if .

Any line passing through the intersection of a1x + b1y + c1 = 0 and
a2x + b2y + c2 = 0 has the equation

a1x + b1y + c1 + k(a2x + b2y + c2) = 0,

where k is a constant, whose value for any particular line may be found
using the additional information given to specify that line.

6.4 The straight line locus ax + by + c = 0 divides the rest of the number
plane into two regions, satisfying the inequalities ax + by + c < 0 and
ax + by + c > 0 respectively. Each region is a half-plane.

Two intersecting straight lines divide the rest of the plane into four regions,
each defined by a pair of linear inequalities.

(i) a1x + b1y + c1 > 0 and a2x + b2y + c2 > 0;

(ii) a1x + b1y + c1 > 0 and a2x + b2y + c2 < 0;

(iii) a1x + b1y + c1 < 0 and a2x + b2y + c2 > 0;

(iv) a1x + b1y + c1 < 0 and a2x + b2y + c2 < 0.

Each such region is the intersection of two half-planes. Extension to the
case of three lines intersecting in pairs, thus including the description of the
interior of a triangle as the intersection of three half-planes or the common
solutions of three linear inequalities in x and y.

6.5 The formula for the distance between two points should be derived, as
should the formula for the perpendicular distance of a point (x1, y1) from a
line ax + by + c = 0.

For example, the following proof may be used.

a
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The equation of the line through P, perpendicular to the given line, is

bx – ay = bx1 – ay1.

This meets ax + by = – c

at (x0, y0), where

(a2 + b2)x0 = b2x1 – aby1 – ac,

(a2 + b2)y0 = –abx1 + a2y1 – bc.

Thus x1 – x0 = 

= 

and y1 – y0 = 

= .

Hence (x1 – x0)2 + (y1 – y0)2 = 

and taking the (positive) square root gives the required distance as

.

E 6.6 The formula for the angle between two lines should be derived, and use
made of it in solving problems.

6.7 A direct derivation of the coordinates of the midpoint of a given interval
should be presented.

E The coordinates of the points dividing a given interval in the ratio m:n,
internally and externally, should be derived.

6.8 Examples, illustrating the use of coordinate methods in solving geometrical
problems, are to be restricted to problems with specified data. The
following are typical problems.

(i) Show that the triangle whose vertices are (1, 1), (–1, 3) and (3, 5) is
isosceles.

(ii) Show that the four points (0, 0), (2, 1), (3, –1), (1, –2) are the corners
of a square.

(iii) Given that A, B, C are the points (–1, –2), (2, 5) and (4, 1)
respectively, find D so that ABCD is a parallelogram.

(iv) Find the coordinates of the point A on the line x = –3 such that the
line joining A to B (3, 5) is perpendicular to the line 2x + 5y = 12.

ax by c

a b
1 1

2 2

+ +

√ +( )

( )ax by c

a b
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7. Series and Applications

This topic might be introduced by a general discussion on series, including
aspects of notation such as 

12 + 22 + 32 + ... + N2 = 

There should also be justification of the topic in terms of the practical examples
given below. The definitions of ‘series’, ‘term’, ‘nth term’ and ‘sum to n terms’
should be understood.

7.1 The definition of an arithmetic series and its common difference should be
understood. The formulae for the nth term and the sum to n terms should
be derived.

7.2 The definitions of a geometric series and its common ratio should be
understood, and the formulae for the nth term and sum to n terms derived.

7.3 Using a calculator, or otherwise,
lim rn

= 0 for ⎪r⎪ < 1
n→∞

should be derived. The case ⎪r⎪ >_ 1 should be discussed.

For a geometric series whose ratio r satisfies ⎪r⎪ < 1, it follows that Sn

approaches a limiting value S as n increases:

S = 
lim Sn = 

lim 
= n→∞ n→∞

No limiting value exists for any geometric series in which ⎪r⎪ >_ 1.

NB Section 7.4 follows Section 7.5 and begins on page 46.

7.5 Applications of arithmetic series.

Applications of arithmetic series should include problems of the type 
‘A clerk is employed at an initial salary of $10 200 per annum. After each
year of service he receives an increment of $900. What is his salary in his
ninth year of service, and what will be his total earnings for the first nine
years?’

Applications of geometric series should include the following types.

(i) Superannuation

The compound interest formula

An = P(1 + r/100)n,

where P is the principal (initial amount), r% the rate of interest per
period, and An the amount accumulated after n periods, should be
understood.

The formula requires a calculator. The following superannuation
problem can then be undertaken. ‘A man invests $1000 at the
beginning of each year in a superannuation fund. Assuming interest is
paid at 8% per annum on the investment, how much will his
investment amount to after 30 years?’

a
l – r

a(l – rn)
l – r

k2

k=1

N

∑
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Obviously the first $1000 is invested at 8% compound interest for 30
years, the next $1000 for 29 years, and the last $1000 for 1 year.
Thus his investment after 30 years is (in dollars)

1000 (1.0830 + 1.0829 + … + 1.08).

This is a geometric series of 30 terms, with first term 1080 and
common ratio 1.08, so that this sum is

=

= $122 346, to the nearest dollar.

(ii) Time Payments

‘A woman borrows $3000 at 1 % per month reducible interest and

pays it off in equal monthly instalments. What should her instalments
be in order to pay off the loan at the end of 4 years?’

Let $An be the amount owing after n months.

After one month and paying the first instalment $M, she will owe 

3000 × 1.015 – M = A1.

Similarly, A1 × 1.015 – M = A2, and after n months,

An = An–1 × 1.015 – M,

= 3000 × (1.015)n – M (1 + 1.015 + … + 1.015n–1).

But A48 = 0.

∴ M (1 + 1.015 + … + 1.01547) = 3000 × 1.01548

∴ M = = 3000 × 1.01548,

so that

M = 

= 88.12

The instalment amount should be $88.12.

Students should understand the difference between the reducible
interest rate and the rate published by finance companies. The
published rate in this case is the equivalent simple interest rate on
$3000 for 4 years, ie

R = = × 100 = 10.25% pa.88 12 48 3000
3000 4

.     
  

× −
×

100I
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Applications to recurring decimals

Recurring decimals should be expressed as rational numbers, eg

0.121212 …

Other examples should also be discussed.

E 7.4 The method of proof known as ‘proof by induction’ makes use of a test for
a set to contain the set of positive integers. This test, called the principle of
mathematical induction, is an assumption concerning the positive integers
and may be stated as follows.

‘If a set of positive integers

(a) contains the positive integer 1, and

(b) can be proved to contain the positive integer k + 1 whenever it
contains the positive integers 1, 2, …, k,

then the set contains all positive integers.’

The use of this method of proof is often suggested when a problem of the
following kind arises. From given information and perhaps by experiment,
we obtain a statement S(n), depending on the positive integer n, which we
wish to prove true for every positive integer n. We let S denote the set of
positive integers n for which S(n) is true. We now try to prove:

(i) that S contains 1 (ie that S(1) is true), and

(ii) that if S contains 1, 2, …, k, then S contains k + 1 
(ie if S(1), S(2), …, S(k) are true, then S(k +1) is true).

If we manage to prove (i) and (ii), then by our test, S contains all positive
integers (ie S(n) is true for every positive integer n).

It frequently happens that we may be able to prove (ii) by using only the
assumption that S(k) is true, instead of the full assumption that S(1), S(2),
…, S(k) are all true.

Sometimes we may guess that S(n) is true only for positive integers n >_ M,
a given positive integer. In that case we replace (i) by ‘S contains M’ and
(ii) by ‘if S contains M, M + 1, …, k, then S contains k + 1’. The test
enables us to conclude that S contains every positive integer greater than or
equal to M.

= × = =−0 12 1
1 0 01
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E Below are several applications illustrating the use of proof by induction.

1. Consider the results.

1 = 12 We call this statement S(1).

1 + 3 = 22 We call this statement S(2).

1 + 3 + 5 = 32 We call this statement S(3).

1 + 3 + 5 + 7 = 42 We call this statement S(4).

We may now guess that the following statement S(n) is true for every integer n.

Statement S(n): 1 + 3 + 5 + … + (2n – 1) = n2

The proof by induction of this statement consists of two steps.

Step 1. Verification that S(1) is a true statement; this is easy since S(1) is merely
the statement 1 = 1.

Step 2. We assume that S(1), S(2), …, S(k) are true. We then attempt to deduce
logically that S(k + 1) must also be true. In the present instance, our
assumption supposes that the following is true:

S(k): 1 + 3 + 5 + … + (2k – 1) = k2,

and using this we try to show that S(k + 1) is true, ie, that

1 + 3 + 5 + … + (2(k + 1) – 1) = (k + 1)2.

By adding 2k + 1 to each side of the (by assumption) true statement
S(k), we obtain

1 + 3 + 5 + … + (2k – 1) + (2k + 1) = k2 + (2k + 1),

ie

1 + 3 + 5 + … + (2k + 1) = (k + 1)2,

which is S(k + 1). Thus, from the assumption that S(k) is true, we have
deduced that S(k + 1) is true.

We have satisfied the conditions of the test for proof by induction, hence we may
conclude that S(n) is true for every n.
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E It is important to realise that both steps of the method of induction must be made
before the proof is valid. This can be illustrated vividly by ‘proofs’ of false
results, for example, the ‘proof by induction’ that all successive integers are
equal to each other (let S(n) be the statement n = n + 1, then S(k + 1) follows
logically from S(k), but S(1) is not true).

2. The standard notation for the sum of a series should be introduced, and
induction used to prove results such as:

(i) n2 =

(ii)

3. If we construct a triangle ABC and measure its external angles (p, q, r in
the figure) we find p + q + r ≈ 360°.

If we construct a plane convex quadrilateral (for example, a parallelogram
or the quadrilateral ABCD shown in the figure) and measure its external
angles, we again find p + q + r + s ≈ 360°.

Generally, if we construct a plane convex polygon with n sides, and
calculate the sum of the measures of its external angles, we expect the
answer to be 360° for the following reason. If we were to stand at a given
vertex, facing along one of its edges, and if we were to walk once around
the polygon until we returned to the original vertex, facing in the original
direction, then we have turned through one complete revolution (360°),
and this is composed of turns of each external angle at each vertex.

1
2 1 2 1 2 1( )( )n n

N
N+ − +=

n

N

=
∑

1

N(N + 1) (2N +1)

6n

N

=
∑

1
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E To prove this by induction, we suppose n >_ 3 and let S(n) be the statement
‘the sum of the exterior angles of an n-sided plane convex polygon is
360°’. We now verify steps (i) and (ii).

(i) We must prove S(3) is true. Referring to the figure, we must prove
that p + q + r = 360°. Using the angle sum property of a triangle, we
have

= 180°,

ie (180° – r) + (180° – p) + (180° – q) = 180°,

or 360° = p + q + r.

Thus S(3) is true.

(ii) We now suppose S(3), S(4), …, S(k) are true, and prove S(k + 1) is
true. Let A1, A2, …, Ak+1 be the vertices (in order) of a (k + 1)-sided
plane convex polygon, with exterior angles p1, p2, …, pk+1
respectively. We must prove p1 + p2 + … + pk+1 = 360°.

Join Ak to A1 and apply S(k) to the k-sided plane convex polygon
A1A2 … Ak. The sum of its exterior angles is therefore 360°. But

exterior angle at A1 = α + p1 (see diagram),

exterior angle at Ak = ß + pk (see diagram),

and at the other vertices A2, …, Ak–1, the exterior angle is the same as
the exterior angle of the original polygon. Hence

(α + p1) + p2 + … + pk–1 + (ß +pk) = 360°,

ie p1 + p2 + … + pk–1 + (α + ß) = 360°. (i)

But in ΔA1AkAk+1,

exterior angle at Ak+1 = sum of interior opposite angles,

ie pk+1 = α + ß (since the angle at A1 = α).

Substituting this into (1) gives the result:

p1 + p2 + … + pk + pk+1 = 360°.

Thus S(k+1) is true. Steps (i) and (ii) are both completed, hence we
may conclude S(n) is true for every n >_ 3.

ˆ ˆ ˆA B C+ +
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8. The Tangent to a Curve and the Derivative of a Function

8.1 The simplest graphs studied so far have consisted almost exclusively of
unbroken curves. This is a sufficient basis for the intuitive idea of
continuity. The behaviour of 1/x and | x |/x near the origin should be
demonstrated, but discontinuities should not be further stressed.

8.2 Intuitively a function is ‘continuous’ at a given point x = c if the function
value f(c) is ‘approached continuously’ from ‘neighbouring’ values of x,
that is, if the ‘limit of f(x) as x approaches c’ agrees with the actual
function value f(c) when x is precisely equal to c. Otherwise, f(x) has a
‘jump’ at x = c. We use the notations

f(x), and f(c + h)

to mean the limit of the function as x➝ c. If f(x) is ‘continuous’
at x = c, then lim f(x) = f(c), and

x➝c

f(c + h) = f(c), for negative and positive values of h.

We use this intuitive notion to define continuity precisely as follows. A
function f(x) is said to be continuous at x = c if:

(i) f(x) is defined at c;

(ii) the limit of f(x) as x approaches c exists;

(iii) f(c) is equal to this limit.

A function f(x) is called continuous or a continuous function if it is
continuous at each point in its domain, ie if f(x) is continuous at x = c for
every choice of c in the domain of the function.

There should be light treatment of the formal proofs of the limits of the
sum, difference and product of two functions, and of the corollaries that,
given f is continuous and g is continuous, then f + g, f – g, fg are
continuous.

8.3 A secant is defined as the straight line passing through two given points on
the curve. The gradients of secants for particular cases should be
calculated. The general expression for the gradient of the secant through
the two points P(c, f(c)) and Q(x, f(x)) on the curve y = f(x) should be
derived.

8.4 By drawing secants through a given point P on the curve y = f(x), and
through a succession of points Q1, Q2, Q3, …, on the curve, first on one
side of P, then on the other, the idea of the tangent line at P as the limiting
position of the secant is illustrated. The geometric picture strongly suggests
that there is a limiting value for the gradient of the secant through P(c, f(c))
and Q(x, f(x)) as Q approaches P, although the formula derived in 8.3
becomes meaningless if x = c. This limiting value of the gradient of the
secant is defined to be the gradient of the tangent line (or tangent) at P and
is called simply the gradient of the curve at P.

The gradient of the tangent at a specified point on a given curve should be
calculated as above in a few simple cases and verified graphically.

lim
h → 0

lim
h → 0

lim
x c→



8.5 The intuitive notion of tangent to a curve, as described above, leads to a
way of defining tangent in terms of a limit. Formally, the gradient of the
curve y = f(x) at the point P(c, f(c)) is defined as the limiting value

= f'(c)

provided this limit exists. Thus f'(c) is the slope of the tangent line to the
curve y = f(x) at the point x = c.

The gradient of y = f(x) at x = c is also called the derivative or differential
coefficient of f(x) at x = c. Note that the limit may fail to exist even for a
continuous curve: the curve may have a vertical tangent (infinite slope), or
a sharp bend, as in y = |x | at x = 0.

By putting x = c + h, where h may be positive or negative, in the
definition, we get the alternative and equivalent forms

f'(c) = = 

where Δx = h, Δy = f(c + h) – f(c), y = f (x).

A number of simple numerical examples of the following type should be
given in order to facilitate understanding of the above definitions.

Example. Find the derivative of the function f(x) = x3 + 5x at x = 1 and
hence find the equation of the tangent line to the curve y = f(x) at the
point (1, 6).

By the definition,

f' (1) = 

= 

= 

= (8 + 3h + h2)

= 8.

The equation of the required tangent line is therefore

y – 6 = 8(x – 1).

Examples should be chosen using the same function with several different
(numerical) values of x, as a lead-in to the definition of the gradient
function.
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For the special case of the straight line y = mx + b, it should be verified
that the definition of gradient yields the correct value m at any point 
P(c, mc + b) on the line.

8.6 Given the function y = f(x), with domain D say, we may use the definition
of gradient at each point (c, f(c)), c ε D, to find out if the function has a
derivative at that point. Examples should be given (eg x2, x3 – x, |x |)
leading to the understanding that for common functions, a derivative exists
at all points in the domain or at all points with isolated exceptions which
can be identified from a sketch of the function. That f '(c) is given by an
expression involving c and related to the expression for f(c) should also be
illustrated by examples.

After first showing on a sketch of y = f(x) the gradient f '(c) at various
points c (illustrated as the slope of the tangent to the curve at (c, f(c))), the
transition should then be made to sketching the gradient function or
derivative y = f '(x), which is the function whose domain is the set of points
x for which f '(x) exists, and whose value at x = c is f '(c). This function
should be identified and drawn for a number of functions f(x) (for example,
y = f(x) and y = f '(x) could be drawn on the same graph or one below the
other, using the same line for the y-axis and different x-axes).

In adopting the usual x, y notation for the derivative function, care must be
taken to avoid any confusion of notation and certainly to avoid nonsense
such as 

f'(x) = (ie the replacing of c by x in the definition of f '(c)).

Right from the beginning of work involving f(x) and f '(x) as functions,
students must be encouraged to remember the geometrical significance of
f'(x) in relation to the graph of f(x), and to relate properties of one graph to
properties of the other. This relationship is further developed in Topic 10.

The notations f'(x), , (f(x)), and the use of different variables in

place of x or y should be discussed and used in examples.

If f(x) possesses a derivative f'(x) for each x belonging to the domain of f,
then f(x) is called a differentiable function. The statement ‘f(x) is
differentiable’ means ‘f(x) has a derivative at each point of its domain’. 

8.7 The geometric series xn–1 + cxn–2 + c2xn–3 + … + cn–2 x + cn–1 has first term
xn–1, and ratio c/x, so that the series has the sum (xn – cn)/(x–c). This
identity and theorems on limits of sums and products may be used to find
the derivative of xn for positive integral values of n. This result should be
used to find the equation of the tangent to the curve y = xn at the point 
(c, cn) for positive integral values of n. Students should be asked to verify
this result graphically for particular values of n and c, comparing the
tangent drawn by eye with the straight line whose equation has been found
analytically.

The derivative of a constant function y = c is the constant function y = 0.

d
dx

dy
dx
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8.8 Although a few simple functions can be differentiated by straightforward
use of the definition given in 8.5, ie differentiated ‘from first principles’,
this procedure is in general far from easy. Even for such simple functions
as √x and 1/x, we resort to the devices

(a) = = = 

(c > 0);

(b) for c ≠ 0, =

= .

Quite apart from the frequent need for ingenuity, differentiation from first
principles is in general a tedious procedure.

Fortunately, there are theorems which allow us to find the derivatives of
complicated functions, starting from derivatives of simpler functions. These
theorems are:

if u,v are differentiable functions of x, then

(i) (Cu) = C where C is a constant,

(ii) (u ± v) = ± ,

(iii) (uv) = u + v ,

(iv) F(u) = F'(u) (for any differentiable function F),

(v) /v2 (v ≠ 0).

While proofs of these theorems will not be examined, a satisfactory
derivation is educationally desirable. In theorem (iv) it is important to give
some simple examples of the meaning of the theorem before proceeding
with a proof; for example use F(u) = u2 and u(x) = x2 + 1 to get the
derivative of (x2 + 1)2, and compare with the result from the direct
differentiation of x4 + 2x2 +1.

It is definitely not the intention of this syllabus to give students a lot of drill
in differentiation from first principles. On the contrary, emphasis is given to
the power of general theorems, such as the ones above, to eliminate the
need for extensive detailed work of this type.
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8.9 It may be expedient to revise the index laws at this stage.

Use the derivative of xn and theorems (i) and (ii) above to find the
derivative of a general polynomial.

Next, put u(x) = x1/n and F(u) = un. Since F(u) = x, direct differentiation of
f(x) = F(u(x)) gives 1, whereas the function of a function rule (theorem
(iv)) leads to nun–1u'(x); hence x1/n = (1/n)x (1/n)–1.

With u(x) = x1/n and F(u) = um (both n and m are integers) the function of a
function rule gives the derivative of a rational power m/n of x.

The derivative of the nth root of a function f(x) is obtained from the
function of a function rule with u(x) = f(x) and F(u) = u1/n.

It should be noted that the derivatives of x1/m, of xm/n, of x–1, and of x–n, all

satisfy the general relationship xp = pxp–1. This is not at all accidental,

but rather is related to the way in which fractional powers and negative

powers have been defined at an earlier stage, so as to preserve the simple

index laws for more complicated indices.

Use of the rules of differentiation should be practised on functions such as

(x2 + 1) , (x + 1) / (x – 1), 1/(x2 – 2x + 2).

9. The Quadratic Polynomial and the Parabola

It is the purpose of this section to develop the algebraic properties of the
quadratic function and to relate these to the parabolic curve.

9.1 The quadratic polynomial: ax2 + bx + c is a quadratic polynomial of the
second degree or a quadratic expression. To distinguish x from the
coefficients a, b, and c, it may be called an indeterminate.

When the domain of x is specified, the quadratic polynomial becomes a
function. In all quadratic polynomials to be studied, the coefficients will be
rational (usually integers) and the domain of x will be the set of real
numbers. The quadratic function will be expressed as 

y = ax2 + bx + c.

A value of x which makes y = 0 is a root of the quadratic equation 
ax2 + bx + c = 0. The term ‘zero of the polynomial’ might be introduced at
the discretion of the teacher.

Graphs of quadratic functions: very simple examples will have already
been studied. In giving further practice in graphing quadratic functions the
teacher should stress, in each particular case, points of general interest, eg
(1) that for large values of x the term ax2 effectively determines the value
of the function; (2) the relation between the graph and the roots of the
quadratic equation ax2 + bx + c = 0. Examples should include cases where
the graph has respectively two points, one point, and no points in common
with the x-axis.

1
2

d
dx

d
dx
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Quadratic inequalities: the graph of the quadratic function should be used
to solve quadratic inequalities, eg find the values of m for which 
12 + 4m – m2 > 0.

9.2 Revision of simple quadratic equations which can be solved by
factorisation.

Solution by ‘completing the square’ in particular cases. It will be noted
that, applied to an equation such as x2 + 2x + 2 = 0 the method leads to
(x + 1)2 + 1 = 0, showing that no (real) value of x can be found which will
make x2 + 2x + 2 equal to zero.

The traditional formula is derived by applying the method of completing
the square to the general quadratic. The discriminant is to be defined and
used to determine the condition for real, equal, or rational roots; pupils
should be reminded of the meaning of the word ‘discriminate’ in ordinary
language.

By actually solving the general quadratic, an important existence theorem
has been established: A quadratic equation may have two (real) roots, one
root or no roots. It does not have more than two roots. The relation
α + ß = –b/a, αß = c/a between the roots α, ß of a quadratic equation and
its coefficients a, b, c, can be derived directly from the general solution. If
an equation has roots α, ß, then it is of the form

a(x–α) (x–ß) = 0 or a[x2 – (α + ß)x + αß] = 0.

Exercises involving finding equations whose roots bear stated relations to
the roots of some other equation are not included in this syllabus.

9.3 From ax2 + bx + c = a

(the general result would of course be preceded by particular examples),
the conditions for positive definite, negative definite and indefinite
quadratic expressions are derived. Only if b2 > 4ac can the expression take
both positive and negative values, and it has the same sign as a for all
values of x except those lying between the roots of the equation 
ax2 + bx + c = 0. Also, ax2 + bx + c has its greatest or least value when
x = – b/2a and this greatest or least value is (4ac – b2)/4a.

An alternative treatment is to consider the roots of the expression

f = ax2 + bx + c (a ≠ 0).

(i) Suppose the discriminant Δ = b2 – 4ac < 0. Then f cannot be zero.
Thus if Δ < 0 and a > 0, then f > 0 for all values of x, and is called
positive definite. If Δ < 0 and a < 0, then f < 0 for all values of x, and
is called negative definite.

(ii) If Δ > 0, then f = 0 for two distinct values of x, say x1 and x2. The
greatest or least value of f occurs at x = (x1 + x2) and f takes both
positive and negative values.
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(iii) If Δ = 0, then f = 0 for one value of x, at x = – b/2a. Then f ≥ 0 if 
a > 0, and f ≤ 0 if a < 0, for all values of x.

(iv) The turning point of f is at = 0, ie at x = – b/2a.

Students should learn to find the turning point and zeros (if any) of f
in order to sketch the graph of f.

The identity of two quadratic expressions

Theorem: If a1x2 + b1x + c1 = a2x2 + b2x + c2 for more than two values of
x, then

a1 = a2, b1 = b2, c1 = c2.

The proof reduces to a discussion of the equation ax2 + bx + c = 0 with 
a = a1 – a2, b = b1 – b2, and c = c1 – c2. Beginners find the proof elusive.
Work on quadratic equations has shown that ax2 + bx + c = 0 can vanish
for at most two values of x. There is one exception: if a = b = c = 0, the
expression vanishes for all values of x. If it is given that ax2 + bx + c = 0
for more than two values of x, we must conclude that a = b = c = 0.
Otherwise the data presents us with a contradiction.

Examples should include the expression of a quadratic polynomial
ax2 + bx + c in the form Ax(x – 1) + Bx + C, where C = c, A = a, B = a + b,
the fitting of a quadratic to three given function values, and similar
identities.

9.4 Examples of the following kinds should be discussed:

x4 – 4x2 – 12 = 0,

(x + 1)2 = 4x2,

9x – 4(3)x + 3 = 0,

E (x + )2 – 5(x+ ) + 6 = 0.

9.5 A parabola is defined as the locus of a point which moves so that its
distance from a fixed point is equal to its distance from a fixed line.

If the fixed point is (0, A) and the fixed line is y = –A, the equation of the
locus is 

x2 = 4Ay or y = x2/4A.

Definitions of focus, directrix, vertex, axis and focal length should be given
and illustrated by examples.

By considering, for example, cases where:

(a) the focus is (x0, A) and the directrix is y = –A

(b) the focus is (0, y0 + A) and the directrix is y = y0 –A

(c) the focus is (x0, y0 + A) and the directrix is y = y0 –A

the interpretation of the equation

(x – x0)2 = 4A(y – y0)

1
x

1
x

df
dx
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as representing a parabola with vertex (x0, y0), axis x = x0, focus 
(x0, y0 + A) and directrix y = y0 – A should be treated. Similarly, the
equations (x – x0)2 = –4A(y – y0), (y – y0)2 = 4A(x – x0),
(y – y0)2 = –4A(x – x0) should be discussed.

Starting with the general quadratic function

y = ax2 + bx + c (a ≠ 0),

and rewriting it as

shows that its graph is a parabola whose focus, directrix, vertex and axis
are easily found.

Practice should also be given in finding the equation of a parabola given,
for example, its vertex, axis and focal length, or in finding the equation of
the family of parabolas having, for example, the line x = x0 as axis and a
given vertex or focal length or passing through a given point.

E 9.6 The parametric equations x = 2At, y = At2.

The equations of the tangent and the normal to the parabola at the point ‘t’
and at the point (x1, y1).

The equation of the chord of contact of the tangents from an external point.

The following geometrical properties of the parabola should be proved
analytically.

(i) The tangent to a parabola at a given point is equally inclined to the
axis and the focal chord through the point. The significance of this
result in the principle of the parabolic reflector should be mentioned.

(ii) The tangents at the extremities of a focal chord intersect at right angles
on the directrix.

Simple locus problems; the following is typical of the most difficult
problems to be treated.

The normals to the parabola x2 = 4Ay at the points P1 and P2 intersect at Q.
If the chord P1P2 varies in such a way that it always passes through the
point (0, –2A), show that Q lies on the parabola.

10. Geometrical Applications of Differentiation

This is a continuation of the exploration of the relationship between geometrical
properties of functions and analytic properties of functions begun in Topic 4 and
developed further in Topic 8. In particular, it will be found useful to consider
examples in which the graphs of y = f(x) and y = f '(x) are drawn so that visual
transfer of information occurs easily. In addition, the interpretation of f '(x) as the
gradient of the tangent at (x, f(x)) is usefully retained by drawing tangent lines to
y = f(x) at appropriately chosen values of x.
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10.1 The geometrical significance of the sign of f '(x) is to be understood,
including the determination of whether or not f(x) is increasing or
decreasing.

10.2 A stationary point of f(x) is defined to be a point on y = f(x) where the
tangent is parallel to the x–axis.

At such a point, = 0.

A turning point of f(x) is a point where the curve y = f(x) is locally a
maximum or a minimum. For differentiable functions f, all turning points
are stationary; but there are stationary points of some functions at which
the tangent ‘crosses the curve’ and which are not turning points. (The term
inflexion might be deferred for the present to avoid the mistaken idea that
all inflexions are ‘horizontal’.) Thus the criterion for a turning point is the
change in sign of f '(x) as x passes through the abscissa of the point, and the
identification of type of stationary point should be made by considering the
sign of f '(x) on either side of the point.

The distinction between a local maximum and the greatest value of a
function for a given domain of the variable should be made clear.

10.3 The definition of the second derivative and the notations

f"(x), , y".

10.4 Geometrical significance of the sign of the second derivative:

if > 0 at P, the curve is concave upwards at P;

if < 0 at P, the curve is concave downwards at P.

At a point of inflexion, vanishes and its sign changes on passing

through the point.

The second derivative may be used to distinguish between maximum and
minimum turning points. The criterion should be used with caution, since
the condition 

= 0, ≠ 0,

is sufficient but not necessary. For example, y = x4 has a minimum point at
the origin where

= = 0.

On the other hand, the curve y = x(3x – 3 – x2) has a point of inflexion 
at x = 1.
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10.5 The sketching of curves such as quadratics, cubics and higher polynomials
and simple rational functions. After computing some values (which may
include points where x = 0 and where y = 0), the determination of the
stationary points is frequently very useful. Other considerations are
symmetry about the axes, behaviour for very large positive and negative
values of x, and the points at which functions such as:

y = , y = x + , y = 

are defined.

E Examples should include both horizontal and vertical asymptotes,

eg y = , y = .

For all students the techniques developed in this topic should be applied to
examples involving functions introduced later in their courses.

10.6 Problems on maxima and minima should include the identification of
turning points for curves, the finding of maximum and minimum values of
given functions over different intervals and over their domains, and the
treatment of problems for which the appropriate function to be analysed is
to be constructed from data given in words or on a diagram.

10.7 The equations of tangents and normals to curves should be found for
simple curves. Curves in which the differentiation involves heavy
mechanical work should be avoided.

10.8 Given f '(x), the question ‘What is f(x)?’ naturally arises. Particular
examples will make plausible, and a proof will show, that f(x) is not
uniquely determined but that two functions which have the same derivative
can only differ by a constant.

Geometrically, given the gradient function of a curve, the curve is not fixed
but it is one of a ‘family’ of similar curves. For example, if

= 2x,

then

y = x2 + c

and for different values of c a family of parabolas is obtained.

The term integration need not be used at this stage. It is in fact preferable
to avoid it. Primitive function is a correct and suitable term.

The following are typical examples.

(i) Given = 2, find s in terms of t if = 10 and s = 0 when t = 0.

(ii) The gradient function of a curve is 3x2 – 1 and the curve passes
through the point (4, 1). Find its equation.
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11. Integration

11.1 The notion of limit underlies both the differential calculus and the integral
calculus. In the former, the intuitive geometrical notion of a tangent to a
curve is formalised by the definition of gradient; if the gradient f '(x) exists
at (x, f(x)), the slope of the tangent at the point is defined to be f '(x). The
intuitive geometrical notion of area under a curve provides the basis for the
development of the integral calculus. Its formal development requires that
this area be defined as the limit (if it exists) of a certain sum of
approximating rectangles, but this development is complicated by two
factors which do not arise in the case of the gradient. Firstly, the
appropriate limit is more difficult to specify, and secondly, having specified
the limit, the specification usually does not allow the value of the limit to
be calculated easily.

For these reasons, the development of this topic will not follow that used
for the differential calculus. Although the ideas leading to a formal
definition of an area under a curve are to be discussed and illustrated with
examples, the formal definition itself is not required. It is to be assumed
that for common functions (and certainly for all continuous functions) there
is an analytical formulation, in terms of a limit operation, of the intuitive
idea of an area under a curve resulting in the definite integral becoming
defined, when it exists, as the measure of this area.

Fortunately, the discovery that the differential calculus and the integral
calculus are related provided a much simpler method of evaluating definite
integrals of most of the common functions. This discovery (the
‘fundamental theorem of the calculus’) can be presented in a simple
manner (provided the existence of area is assumed) and forms the basis of
much theoretical and practical work involving integration.

We complete this section by briefly describing a suggested method of
introducing the topic. We suppose y = f(x) is defined for values of x
including all x in a <_ x <_ b, is positive for these values of x, and has an
easily drawn graph:

x

y = f (x)
y

h

H

aO b



Intuitively, there is an area enclosed by the x-axis, the ordinates at x = a
and x = b, and the curve. The problem is to calculate the size A, say, of this
area. We know how to calculate areas of rectangles, triangles and of simple
polygons. If h, H are respectively the minimum and maximum values of
f(x) in a <_ x <_ b (and examples should be chosen so that these occur both
inside and at the endpoints), then

h(b –a) ≤ A ≤ H(b – a).

If we now split a <_ x <_ b into two subintervals, a <_ x <_ and <_ x
<_ b, take minimum and maximum values h1, H1 in the first subinterval and 
h2, H2 in the second, then the diagram shows that 

h(b – a) <_ (h1 + h2) <_ A <_ (H1 + H2) <_ H(b – a),

and usually the inequalities are strict, so that the new area sums are closer
to A than the original bounds.

Taking three, four, … , n equal subdivisions of a <_ x <_ b and forming the
corresponding area sums, gives closer and closer bounds for A. This is to
be done for a simple function such as y = x2 for 0 <_ x <_ 1, the sums to be
written down and evaluated using a calculator.

Intuitively, as the number n of subdivisions increases, the approximating
sums approach the value A. Supposing n large, a typical rectangle in such a
sum has a small base of length dx (‘dx’ or ‘Δx’ are notations used for a very
small length) and a height which is close to f(x) for any value of x lying in
its base. This is so because f continuous means that all values f(x) are close
together if the values x are close together. Thus the area of a typical
rectangle is f(x)dx and the sum of these areas is represented symbolically
by ∑f(x)dx. The limiting value of this sum as n increases (and dx decreases)
was denoted symbolically by

x = b
S f(x)dx,

x = a

where the large S stood for ‘limiting sum’ and the bounds x = a and x = b
indicated the interval over which the sum was taken. As time went by the
S became elongated and modern notation for the same limit is

f(x)dx,
a

b
∫

b a−
2

b a−
2

a b+
2

a b+
2
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which is called the definite integral of the function f(x) between x = a and 
x = b and whose value A is the size of the area under the curve y = f(x)
between x = a and x = b.

11.2 Recall that a primitive function of a given function f(x) is any function F(x)
such that F'(x) = f(x). Any two primitive functions of f(x) differ by a
constant function.

Let y = f(x) be a continuous positive curve defined for values of x including
all x ≥ a.

If c > a, let A(c) denote the area between a and c, and A(x) denote the area
between a and x. Then A(x) – A(c) denotes the shaded area, which is
approximately that of a rectangle of height f(x) and base x – c, and so of
area f(x) (x – c). Thus the ratio

is approximately equal to f(x). If the maximum and minimum values of f(t)
for c <_ t <_ x are M, m respectively, then precise bounds for this ratio are 

m <_ ≤ M,

and these inequalities also hold if x < c.

As x approaches c, both m and M approach f(c). Hence

= f(c)

and (by the definition of the derivative) is also equal to A'(c). Hence

A'(c) = f(c) (c > a),

and this equation, being true for all c > a, says that the two functions 
y = f(x) and y = A'(x) are equal for all x > a. Hence A(x) is a primitive
function of f(x) for x > a. If we know already a primitive function F(x) of
f(x), then

A(x) = F(x) + C for some constant C.

As x approaches a, A(x) approaches 0, F(x) approaches F(a) and
consequently the value of C is –F(a). Thus

A(x) = F(x) – F(a) (x > a).

If b > a, then

A(b) = f(x)dx = F(b) – F(a),
a

b
∫

A x A c

x c

( ) ( )−

−
lim

x c→

A x A c

x c

( ) ( )−

−

A x A c

x c

( ) ( )−

−

62

Mathematics 2/3 Unit Syllabus — Years 11–12

x

y

A(c)

a cO x



and hence the area and the definite integral can both be found using the
known primitive function F(x). The problem of evaluating definite integrals
is therefore solved if we can find a primitive function. For example,

if f(x) = x2, we may choose F(x) = , and

x2dx = F(b) – F(a) = b3 – a3.

This is an appropriate time to introduce and discuss the following
extensions.

(i) The case where f(x) is negative or changes sign.

For example, if f(x) = –x3, draw y = f(x) for x ≥ –1 and evaluate, say,

–x3dx, –x3dx, –x3dx, –x3dx,

–x3dx and –x3dx, –x3dx,

using the primitive function . From this, the idea that area is evaluated

as positive or negative according as f is positive or negative over the
interval, and also that when f changes sign the integral gives the net area
(positive + negative) should be developed.

(ii) The result that if a ≤ b ≤ c,

f(x)dx + f(x)dx – f(x)dx,

obtained by writing down values in terms of a primitive F(x), should
be related to equations involving the corresponding signed areas.

(iii) If F, G are primitives of f, g respectively, then F + G is a primitive of
f + g. Thus

(f(x) + g(x))dx = (F(b) + G(b)) – (F(a) + G(a))

= (F(b) – F(a)) + (G(b) – G(a))

= f(x)dx + g(x)dx.

The practical importance of this result is to be emphasised; the
integral of any sum is a sum of the integrals, so any polynomial may
be integrated by finding primitives of each term, etc.

There is no need to discuss the case f(x)dx, where b < a, immediately,

but it should be introduced at an appropriate time, with simple examples.

11.3 There are quite simple functions whose definite integrals cannot be found
exactly in terms of common functions. For such cases, for problems
involving more complex functions, and also because of the ease with which

a

b
∫

a

b
∫a

b
∫

a

b
∫

a

c
∫b

c
∫a

b
∫

−x4

4

0

2
∫0

1
∫−∫ 1

2

−∫ 1

1

−

−
∫ 1

1
2

−∫ 1

0

−

−
∫ 1

1
2

1
3

1
3a

b
∫

x3

3
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computers can execute the necessary calculations to a high degree of
accuracy, this section is devoted to two of the simple methods of
approximate integration based on the idea of approximating an exact area
by a sum of areas of shapes whose areas can be calculated. As well as
using simple polygons such as rectangles or trapezia, one may use any
curve y = f(x) whose area can be calculated explicitly; for example,
quadratic polynomials (parabolas) or cubic polynomials.

Examples should be confined to problems in which the resulting
calculations are easily performed on a calculator, but should include
functions whose integrals are discussed or occur later in this syllabus when
examples involving them may appropriately be introduced.

(i) Trapezoidal rule

If we approximate the curve y = f(x) on the interval a <_ x <_ b by the
straight line passing through (a, f(a)) and (b, f(b)), we may estimate
the area under the curve by the area under the line:

This approximates f(x)dx by the area of a trapezium, which may

be calculated as (f(a) + f(b)).

If f(x) = x2, a = 1 and b = 2, x2dx = = 2.33…,

while the above approximation gives (f(1) + f(2)) = = 2.5. 
By dividing the base into two equal subintervals, and using a linear
approximation to f(x) on each subinterval, the area is approximated
by two trapezia of total area

(f(a) + 2f + f(b)),

which for the given example
yields the better approximation
(1 + 9/2 + 4) / 4 = 19/8 = 2.375.

a b+
2

b a−
4

5
2

1
2

7
31

2
∫

b a−
2

a

b
∫
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The method extends to dividing the interval into n equal subintervals
of length h = (b – a)/n, and using a trapezium approximation on each
subinterval. For instance, using n = 5 (so h = 0.2) in our example

x2dx ≈ [1 + 2(1.44) + 2(1.96) + 2(2.56) + 2(3.24) + 4]

= 2.34.

(ii) Simpson’s rule

If we approximate the curve y = f(x) on a <_ x <_ b by a quadratic
function (ie by a parabola) agreeing with f(x) at the three points

(a, f(a)), and (b, f(b)), then, as a diagram will show,

we would expect to increase the accuracy of the area approximation
by using the area under the parabola. The resulting approximation,
known as Simpson’s rule, is

f(x)dx ≈

Applied to the same integral as before, we obtain 

x2dx ≈ {1 + 9 + 4} = ,

which is of course exact because the approximating parabola is in
this case the same function y = x2. (In fact, Simpson’s rule is exact
for f(x) equal to any quadratic or cubic polynomial.)

An example such as y = for 1 <_ x <_ 2 should now be chosen,

where students cannot find a primitive function, and the integral 

dx approximated by the trapezoidal rule with n = 1 and n = 2,

and by Simpson’s rule applied first to the whole interval and then to

the two subintervals 1 <_ x <_ and <_ x <_ 2.

It is important to emphasise that any definite integral may be
evaluated approximately by such rules, and that estimates of the size
of possible error can often be calculated. Later, when integrals are
used to find volumes or velocities, etc, examples should be chosen to
obtain approximate values of the relevant quantities.

3
2

3
2

1
x1

2
∫

1
x

7
3

1
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11.4 (i) Areas

Only very simple functions can be considered at this stage. Examples
should include the calculation of areas bounded by a curve and the
x-axis, by a curve and the y-axis, and between two curves. Simple
examples where the function changes sign in the interval of
integration should also be included. All problems should be
accompanied be a clear sketch showing the required area.

(ii) Volumes of solids of revolution

Standard results for the cone and the sphere should be derived. Other
problems should involve only simple curves, but revolution about the
y-axis should also be considered.

(iii) Other applications occur in later topics, and care should be taken to
ensure that examples and problems in the later topics are used to
reinforce integration techniques.

E 11.5 3 Unit students should be prepared to undertake some harder integration,
as exemplified below.

(i) Find x √(1 + x2)dx, using the substitution u = x2 + 1.

(ii) Use the substitution t = u2 – 1 to evaluate

dt.

In all examples the substitution is to be given.

12. Logarithmic and Exponential Functions

Note: This particular section might well benefit by splitting it into two parts. The
algebraic Topics 12.1–12.3 can be taught before calculus is introduced. Keys for
the exponential and logarithmic functions appear on most scientific calculators
and students should be familiar with their use. Students should be aware of the
existence of tables of these functions, and should check that the values given in
the tables are those appearing on the calculator.

12.1 The introduction of scientific calculators into the classroom in the junior
school eliminates the necessity of practical work with logarithms to the
base of 10. Even though familiarity with index notation is expected of the
users of such calculators, it may be necessary to revise or to develop that
notation and the index laws for integer exponents. The relationship of
indices to multiplication of repeated factors and the introduction of zero
and negative integer indices should be understood, as should the fact that
the index laws (obtained initially for positive integer indices) remain valid
for arbitrary integer indices.

If a > 0 and r = > 0, then ar is defined as the qth root of ap. This should

be approached via simple values of r (eg , ).2
3

1
2

p
q

t
t√ +( )10

1
∫

∫
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The index laws should be verified for simple cases (such as . = a1)
and stated to be true for general rational indices (a general proof is not
required). The extension to negative rational indices follows as for the case
of integer indices.

Calculators should be used to verify numerical examples of index notation
and index laws. It is expected that algebraic computations involving the
index rules will be tested in the examination.

12.2 The words exponent, base and logarithm should be introduced and
understood. The notations logax, log10x should be known. There should be
some examples of cases where the logarithm is integral and rational, and
other examples using calculator or tables.

The algebraic properties of logarithms and exponents (including in
particular, the identities loga1 = 0, logaxy = logax + logay, and
logaxc = c logax) should be derived from the appropriate index laws.

12.3 For a fixed a > 0, calculators should be used to draw graphs of y = ax and 
y = logax, the cases a < 1, a = 1, a > 1 to be discussed. (Some discussion
could be introduced here, or into 12.2, regarding the problem of defining ax

when x is real but not rational, and it could be pointed out that the method 

used in 12.1 to define, say, simply does not extend to cover the case 

of attaching a meaning to say or aπ. The idea of using rational 
approximations to real exponents (rational and non-rational) could be
explored using calculators.)

If a > 1, it should be stated that y = ax is an increasing function which
takes each positive real value once only. Thus to each positive y there is a
unique real x such that y = ax and hence such that logay = x. The change of
base formulae follow from index laws. Computational examples of the
algebraic properties of logarithms and change of base should be set, and
may be tested in the examination.

12.4 (a) To find the gradient of the curve y = 10x.

(i) Let f(x) = 10x. At any value x, we know that

f'(x) = = 10x

(ii) Evaluate for various values of h, using a calculator,

eg h = 0.1 0.01 0.001

= 2.6 2.332.31.10 1h

h
−( ) 

10 1h

h
−( ) 

10 1h

h
−( ) lim

h → 0
10 10x h x

h

++ −−[[ ]] lim
h → 0

a 2

a
1
2

a
1
2a

1
2
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It appears that approaches a limit (call it γ). This is also

intuitively obvious, since is the gradient of the curve

y = 10x at x = 0.

(b) Let γ = ≈ 2.3. If y = 10x, then by (a) (i), = γ10x.

If z = 10λx = yλ, then = = λyλ–1 γ10x = λγ10λx.

Now choose λ so that λγ = 1 (ie λ ≈ 0.43) and write e = 10λ ≈ 2.7.

Then z = ex and = ex.

(If calculators are used, the argument may be applied to ax for other a,
such as a = 2.)

(c) Alternative methods of calculating e are:

(i) put H = 10h – 1 so that h = log10(1 + H) and H → 0 as h → 0.
Then

= ;

(ii) put = 10h–1 so that h = log10(1 + ) and n → ∞ as h → 0.

Since

= n log10(1 + ) = log10(1 + )n,

it follows from (b) that e = 101/γ = (1 + )n.

(d) If y = ex, = ex = y, so = .

∴ x = logey = dy, etc.

(e) Teachers may prefer to use for able students the approach, based 

on , which first defines ln x and then defines ex as the 

function inverse to ln x.

The notations ln x and log x for the natural logarithm logex should be
known. For historical reasons some books and calculators use log x
for log10x. This practice should be discouraged.

12.5 (i) Differentiation of eax+b, loge(ax + b) and the corresponding
integrations.

(ii) Differentiation of logef(x) for simple functions f(x).

(iii) Integration of f'(x)/f(x) by inspection, without formal change of
variable.

dt
t1

x
∫
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y∫
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13. The Trigonometric Functions

13.1 Just as natural logarithms are preferable to logarithms to other bases
(including 10) for the study of logarithmic and exponential functions, it
turns out that degrees are not a satisfactory measure of angle size in further
work involving the trigonometric functions. A suitable measure of angle
size is the length of arc subtended by the angle when it is at the centre of a
unit circle. An angle is of measure 1 if the arc it subtends on a unit circle
has unit length. This new unit of measure is called a radian.

The number π may be defined as the length of a semi-circular arc of a unit
circle. It then follows that

π radians = 180°,

and the formulae for conversion from degrees to radians and vice versa
now follow. Familiarity with both measures is expected. Practice should be
given so that exact equivalents are known for common angle sizes and so
that accuracy is developed in approximating sizes given in one measure by
sizes in the other. The formula = rθ, for the length of an arc
subtending an angle at the centre of a circle of radius r, should be derived,
as also should the formula A = r2θ for the area of the corresponding
sector.

The relations treated in Topic 5.2 should be revised using radian measure,
as should Topic 5.9 for 3 Unit students.

13.2 Using radian measure, sine and cosine are now defined as functions of a
real variable: for each real number x, sin x is defined as the sine of an
angle of size x radians, cos x as the cosine of this angle. Thus the functions
y = sin x, y = cos x are defined for all real x and graphs should be drawn of
them. The functions tan x etc, may now be defined in terms of sin x and cos x,
their domains of definition are to be found, and graphs drawn of them.

13.3 The graphs of sin x, cos x and tan x should be known and their periodicity
noted. Graphs of functions such as y = 3 cos 2x, y = sin πx or y = 1 – cos x
should be drawn, and the main features noted.

Some practice is to be given in using graphs to solve simple equations such
as 

sin 2x = x.

13.4 and 13.5 It should be noted that sin h → 0 and cos h → 1 as h → 0.

The limit → 1 as h → 0, should be obtained. This can be tentatively

derived on a calculator, or the following geometrical proof can be used.

AB is an arc of the unit circle, h is
in radians. O is the centre of the
circle and AT is the tangent at A.

sin h
h

1
2

1
2

 l l
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Area ΔOAB < area sector OAB < area ΔOAT, ie,

sin h < h < tan h.

∴ 1< < .

As h → 0, cos h → 1. Hence → 1 as h → 0.

This procedure can be repeated with h in degrees to illustrate the reason for
introducing radians. Moreover,

= = .

Thus = → as h → 0.

The evaluation of (sin x) given below uses these limits and the formula

for sin (x + h). A simple derivation of this formula, valid for 0 < x < � and
for small positive values of h is as follows.

In ΔABC,

Area ABC = cb sin A;

= cb sin(x+h);

= kp + kq.

Hence sin (x + h) = ,

= sin h cos x + sin x cos h.

Proofs of results in 13.5 are not examinable and alternative methods of
proof may be used at the teacher’s discretion.

E 3 Unit students should be able to use the result = 1.

Example: given = 1, find 

The derivative of sin x.

= cos x + sin x.

As h → 0, → 1 and → – → 0.

Hence sin x = = cos x.
sin ( )   sinx h x

h
+ −lim
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d
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h
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Since cos x = sin(π/2 – x), the function of a function rule gives

cos x = – cos(π/2 – x),
= – sin x,

and finally

(tan x) = (sin x/cos x) = sec2x.

E 13.6 3 Unit students should be able to perform integrations of the types 

2 cos2x dx, cos x sin2x dx.

13.7 sin(ax + b) = a cos(ax + b), hence

cos(ax + b)dx = sin(ax + b) (a ≠ 0).

Other pairs should be derived similarly. Examples giving practice in
differentiation and integration of these functions and related to items
discussed in topics 10 and 11 should also be given.

14. Applications of Calculus to the Physical World

14.1 The rate of change of some physical quantity Q is defined as . 

(An alternative notation is ). This can be justified by

considering . The rate of change of the population P of a

town is defined, for example, as while the rate of change of the 

volume of water in a container would be defined as .

In doing questions on rates of change students should be encouraged to
draw sketches of Q and as functions of t whenever this is possible. In
particular the relationship between an integral and the area under a curve is
relevant here.

Examples should be kept as mathematically simple as possible, with the
emphasis on understanding the behaviour of the system. 2 Unit students
will not be expected to derive an equation from given information; in all
examples, an equation will be given.

Examples

(i) A valve is slowly opened in a pipeline such that the volume flow rate
R varies with time according to the relation

R = kt (t > 0), where k is a constant.

Q̇

dV
dt

dP
dt

Q s Q t
s t

( )   ( )
  
−
−

lim
s t→

Q̇

dQ
dt

1
a∫

d
dx

0
4
π

∫∫

d
dx

d
dx

d
dx
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Calculate the total volume of water that flows through the valve in
the first 10 seconds if k = 1.3m3s–2.

R = = kt.

∴ V = kt2 + c. Since V = 0 at t = 0, c = 0.

When t = 10, V = × 1.3 × 102 = 65 m3.

65 m3 flows through in the first ten seconds.

The following are examples of harder problems.

E (ii) A spherical balloon is being deflated so that the radius decreases at a
constant rate of 10 mm per second. Calculate the rate of change of
volume when the radius of the balloon is 100 mm.

Let V be the volume of the balloon. Then V = πR3, and we are 

given that = –10. Using the chain rule,

= 

= 4πR2

Now at R = 100,

= 4� × 1002 × (–10)

= –4� × 105mm3 per second.

(iii) A spherical bubble is expanding so that its volume increases at the
constant rate of 70 mm3 per second. What is the rate of increase of its
surface area when the radius is 10 mm?

Let V be the volume of the bubble.

Then = 70.

Now V = �R3; ∴ = = 4�R2 (1)

Also A = 4�R2; ∴ = 8�R. (2)

Thus = ,

= = 

Now when R = 10, = 14 mm2 per second.

This example illustrates the elimination of between (1) and

(2) but the simple calculation of itself from (1) should not

be overlooked.
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14.2 Students initially should sketch the curve y = Aekx for the various values of
A and k, both positive and negative.

Let N be a population. Note that N(t) is a function of time. Assume that the
birth and death rates at any one time are proportional to N, so that the rate
of change of population is given by

= kN. (3)

k is assumed to be constant and is called the growth rate; it might be
different for different species or locations. The rate is often given as a
percentage, but in (3) it should be expressed as a decimal or fraction. If 
k > 0, the birth rate is larger than the death rate, while if k < 0 the birth rate
is smaller than the death rate. If for a particular species the birth and death
rates are equal, then k = 0, N is constant and the population is static.

Derivation of the solution of (3) is not required. Use direct substitution of
N = Aekt (A fixed) to demonstrate that it satisfies the equation for every
choice of A, so that A fulfils the role of a constant of integration. The idea
of an ‘initial population’ N(0) should be introduced. It is then clear that 
A = N(0), so that A is completely determined by the initial population.
Since the subsequent population at a time t later is given by

N(t) = N(0)ekt,

it is also completely determined.

Populations N(t) should be graphed as functions of t for various values of A
and k, as shown in the following examples.

(i) The growth rate per hour of a population of bacteria is 10% of the
population. At t = 0 the population is 1.0 × 106. Sketch the curve of
population after 3 hours, correct to 4 significant figures.

In this case = 0.1 N so that N = Ae0.1t, where t is in hours.

At t = 0, N = 106, so that A = 106.

After 3 hours the

population is

N = 106 × e0.35

≈ 1.419 × 106.

Note: The term ‘growth rate per hour’ is a widely used method of
indicating that the time is to be measured in hours. The value of k is
not a measure of an average rate of increase over a period of one
hour (N(1) ≠ 1.1A); rather, it indicates the instantaneous rate of
increase of the population.

(ii) On an island, the population in 1960 was 1732, and in 1970 it was
1260. Find the annual growth rate to the nearest percent assuming it
is proportional to the population. In how many years will the
population be half that in 1960?

1
2

dN
dt

1
2

dN
dt

t (hours)O

106

1.419 x 106

1
23



In this case N = Aekt. At t = 0, N = 1732, therefore N = 1732ekt.
At t = 10, N = 1260, and hence

e10k = 1260/1732,

k = loge (1260/1732)

≈ – 0.0318

= –3% (to the nearest percent.)

The population has halved at the time T years if 

ekT = 0.5. Thus kT = loge0.5 and

T = 

= 21.79.

∴ the population has halved in about 22 years.

The concept of exponential growth has been applied above to populations
but could equally well be applied to depletion of natural resources,
industrial production, inflation etc.

E (iii) For 3 Unit students, consider also the equation 

= k(N – P),

where k and P are constants. First note that one solution of this
equation is N = P. Direct substitution shows that the solution of this
equation may be written in the form

N = P + Aekt,

where A is an arbitrary constant. Some numerical examples should be
undertaken, determining A and/or k from given initial conditions. It
should be noted that whenever k < 0, the population N tends to the
limit P as t → ∞, irrespective of the initial conditions. The case k > 0
should also be discussed.

14.3 Velocity is defined as the rate of change of displacement, and acceleration

as the rate of change of velocity. The notations 

should be introduced and used. Examples should concentrate on simple
applications including physical descriptions of the motion of a particle
given its distance from an origin, its velocity or its acceleration as a
function of time. The significance of negative displacements, velocities and
accelerations should be clearly understood. Some examples illustrating
these points are now given.

(i) The acceleration a ms–2 of a moving particle is given after t seconds
by a = –3t. Initially the particle is located at x = 0 and its velocity 
v = 2 ms–1. Find the velocity v and displacement x as functions of
time. Determine when the particle is at rest and when it returns to the
origin at 0. Sketch x as a function of time. Describe the motion.

dx
dt

dv
dt

d x
dt

x x,  ˙,  ,  ,  ˙̇
2

2

dN
dt

log .

log ( / )
e

e

0 5

1260 17321
10

1
10
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If a = –3t, v = a dt = – t2 + A.

At t = 0, v = 2 and therefore A = 2.

v = – t2 + 2.

Now x = v dt = (– t2 + 2)dt.

∴ x = – t3 + 2t + C.

But at t = 0, x = 0, ∴ C = 0.

x = – t3 + 2t.

The particle is at rest when v = 0, ie when t2 = , so that t =
seconds.

The particle returns to 0 when x = 0.

t(2 – t2) = 0

t(2 – t) (2 + t) = 0.

Thus x = 0 at t = 0, ± 2 and the particle returns to the origin after 2
seconds (since t = –2 occurs before the start of the motion).

Note that at t = ,

x = .

The particle was initially located at the origin, was travelling to the right
(since v > 0) and was slowing down (since v > 0, a < 0). It stopped

after seconds, to the right of 0. It then travels back to the 

left (since v < 0 when t > ) with increasing speed (since 

v < 0, a < 0), passing through the origin after 2 seconds. It continues
to travel left (since v ≠ 0 for all other values of t).

(ii) A particle moves in a straight line. At time t seconds its distance x
metres from a fixed point O in the line is given by

x = 2 – 2 cos 2t.

Sketch the graph of x as a function of t. Find the times when the
particle is at rest and the position of the particle at those times.
Describe the motion.

2 3
3

8 3
9

2 3
3

8 3
9

2 3
3

1
2

1
2

2 3
3

4
3

1
2

1
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3
2

3
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The velocity is given by v = = 4 sin 2t.

∴ v = 0 when t = 0, , π, , … and at these times, x = 0, 4, 0, 4, ….

The particle is initially at 0 and is at rest. It starts to travel to the right
with increasing speed for seconds. It then slows down and stops

after seconds at a position 4 units to the right of 0. It travels back

to the left arriving at 0 after an additional seconds. It continues to

oscillate between x = 0 and x = 4 taking π seconds for one complete
oscillation. (It should be noted that the above description may be
obtained directly from the displacement-time graph).

Note: It is suggested that students be led gradually into a full
description of the particle’s motion by first attempting to describe the
motion only from consideration of the displacements of the particle
at various times.

E 14.3 If it is also possible to give v as a function of x, then, using the function of
a function rule,

but = v, so

.

Problems involving the solutions of equations of the forms

= f(x) and = = g(x)

should be considered. Eg, find x as a function of t given that

= – e–x, v = 1, x = 0 at t = 0.

By integration, v2 = e–x + C.

But v = 1 when x = 0. ∴ C = 0.

v2 = e–x,

∴ v = ± .

To decide which expression for v is relevant for this motion it will be
necessary to examine the given data.

At x = 0, v = 1 > 0.

But > 0

∴ v = .

Hence = .

Using the rule for derivatives of inverse functions (see Topic 15.1)

= , hence t = 2 – 2 and

x = 2 loge(1 + t/2).

e
x− 1

2e
x− 1

2dx
dt

e
x− 1

2dx
dt

e
x− 1

2

e
x− 1

2

e
x− 1

2

1
2

dv
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dt
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dv
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E The Motion of a Projectile. The equations of motion of a particle projected
vertically upwards should be derived.

The two-dimensional motion of a projectile with the initial conditions that

at t = 0, x = y = 0, u = = Vcos α, v = = Vsin α, results in the

expressions that, at time t, x = Vt cos α, y = Vt sin α – gt2. This pair of

equations gives a parametric representation of the ‘flight parabola’. Here V
is the initial speed and α the angle of projection. The cartesian equation of
the flight parabola is

y = x tan α – gx2/(V2 cos2α).

The range should be derived for a projectile fired on a horizontal plane. The
maximum range on a horizontal plane is V2/g when α = 45°.

E 14.4 It follows immediately from the given equation that

v = = –ansin (nt + α)

and that

= = –an2cos(nt + α) = –n2x.

Graphs of x, and as functions of t should be sketched and the
relationships between zero, minimum and maximum values of the three
quantities noted. The physical significance of the parameters a, n and α
should be understood, as should the terms amplitude, frequency, period
and phase.

The differential equation of the motion may be interpreted as describing
the motion of a particle acting under a force directed towards the origin O
and proportional to the distance from O. This occurs in practice where a
particle oscillates about an equilibrium position (as, for example, in the
motion of a pendulum bob or of a mass attached to a spring, or the bobbing
motion of a buoy).

Note that from the expression for x and v,

v2 + n2x2 = a2n2,

a positive constant (ie independent of t). Notice also that if n is given, then a
and α may be determined from a knowledge of x and v at any given time t0:

a directly from the above equation and α from either of the two
expressions for x and v.

Extension to the case

x = b + a cos (nt + α)

and the corresponding equation

= –n2 (x–b)

describing simple harmonic motion about the position x = b.

˙̇x

˙̇xẋ

˙̇xv̇

ẋ

1
2

1
2

dy
dt

dx
dt
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E An alternative treatment of simple harmonic motion begins with the
differential equation = –n2x and then uses the inverse trigonometric
functions to derive a solution of the form x = a cos (nt + α). A rigorous
treatment along these lines is difficult because x is not an invertible
function of t (and v is not a function of x) unless the range of x is restricted.
It can be observed that

x = x0 cos(n(t – t0)) + sin(n(t – t0))

is a solution of the equation, which satisfies the additional conditions
x (t0) = x0, v(t0) = v0. Questions of uniqueness of solution are outside the
scope of the syllabus.

E 15. Inverse Functions and the Inverse Trigonometric Functions
15.1 Suppose that y = f(x) is a continuous increasing function in the domain

a ≤ x ≤ b (ie f(ß) > f(α) for all ß > α in this domain). To each value y in
f(a) ≤ y ≤ f(b) there corresponds a unique value (namely, the x such that
y = f(x)) and we may write x = g(y), where the function g has domain
f(a) ≤ y ≤ f(b).

The two relations y = f(x) and x = g(y) are equivalent and are represented
by the same graph in the x, y plane. These two relations are mutually
inverse functions in the sense that

for a ≤ x ≤ b, g(f(x)x) = g(y) = x,

for f(a) ≤ y ≤ f(b), y = f(x) = f(g(y));

accordingly the notation f–1 is commonly used for the function inverse to f.

If we express the function f–1 in the conventional form y = f–1(x), its graph
is obtained from that of y = f(x) by reflection in the line y = x. The domain
of y = f–1(x) is the range of y = f(x) and vice versa.

Care must be taken to distinguish f–1(x) from (f(x))–1 = .

Simple examples of mutually inverse functions, which could be used to
introduce this topic, are:

(i) y = x3, all real x; y = , all real x.

(ii) y = ex, all real x; y = logex, x > 0.

The problem of defining an inverse function when the equation y = f(x) has
more than one solution x for a given y should be discussed; the case y = x2

is a useful illustration.

Differentiation. If in addition f is a differentiable function of x then (since a
tangent line to y = f(x) is also a tangent line to x = g(y)) g is a differentiable
function of y, and (since the relevant angles of inclination are complementary)

= 1/ or = 1,

which may be formally obtained from the definition of the derivative.

Example If y = x3, = 3x2 = . Hence = = (y ).
1
3

d
dy

1

3
2
3y

dx
dy3

2
3y

dy
dx

dy
dx

dx
dy⋅dy

dx[ ]dx
dy
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1
f x( )
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n
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E 15.2 The inverse function y = sin–1x should be defined with domain –1 ≤ x ≤ 1
and range –π/2 ≤ y ≤ π/2. The general solution of the equation sin θ = b,
for |b | ≥ 1, is then expressible as θ = nπ + (–1)n sin–1b. The functions 

y = cos –1x (0 ≤ y ≤ π) and y = tan –1x (– π < y < π) should also be

defined, and the general solution of the equations cos θ = b (|b | ≤ 1) and
tan θ = b should be obtained.

E 15.4 For example, properties such as:

(i) sin–1 (–x) = –sin–1x, cos–1 (–x) = π – cos–1x, tan–1 (–x) = –tan–1x;

(ii) sin–1x + cos–1x = π.

E 15.5 The derivatives of sin–1 (x/a), cos–1 (x/a) and tan–1 (x/a) should be obtained.
The corresponding integrations should be known.

E 16. Polynomials

16.1 A real polynomial P(x) of degree n is an expression of the form

P(x) = p0 + p1x + … + pn–1xn–1 + pnxn (pn ≠ 0),

where the real numbers p0, … , pn are called the coefficients of P(x) and for
convenience will usually be chosen to be integers. The degree of P(x) is
that of the highest power of x occurring with non-zero coefficient.

P(x) is defined for all real x and is a (continuous and) differentiable
function of x. The equation P(x) = 0 is called a polynomial equation of
degree n, and those real numbers x which satisfy the equation are called
real roots of the equation or real zeros of the corresponding polynomial.
Examples should be given illustrating cases where one or more real roots
occur and where none occur.

Graphs of simple polynomials should be drawn, using all the techniques
available. The following useful facts should be noted.

(i) For very large | x |, P(x) ≈ pnxn

(ii) A polynomial of odd degree always has at least one real zero.

(iii) At least one maximum or minimum value of P occurs between any
two distinct real zeros.

16.2 Long division of one polynomial by another should be discussed and
illustrated by examples using linear or quadratic divisors. The division
process should be expressed as an identity:

P(x) = A(x)Q(x) + R(x),

where A(x) is the divisor, Q(x) the quotient and R(x) the remainder. The
degree of R(x) must be less than that of A(x). With this condition satisfied,
it may be stated that Q(x) and R(x) are then unique.

1
2

1
2

1
2
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E Rational functions should be defined as ratios of polynomials and the
division process also expressed in the form

= Q(x) + .

The remainder theorem, which states that the remainder when P(x) is
divided by x – a is P(a), and the factor theorem, which states that if 
P(a) = 0 then x – a is a factor of P(x), both follow from the identity and 
the condition on R(x).

The following results should be obtained.

(i) If P(x) has k distinct real zeros a1, …, ak, then (x – a1) … (x – ak)
is a factor of P(x).

(ii) If P(x) has degree n and n distinct real zeros a1, … , an, then 
P(x) = pn(x – a1) … (x – an).

(iii) A polynomial of degree n cannot have more than n distinct real zeros.

(iv) A polynomial of degree at most n, which has more than n distinct
real zeros, is the zero polynomial (ie the polynomial in which
p0 = p1 = … = pn = 0).

16.3 The convention of double and multiple roots should be explained and the
results above extended to show that a polynomial equation of degree n has
at most n real roots (and may have none).

The relation between the coefficients and the roots (if they exist) of the
quadratic equation ax2 + bx + c = 0 should now be derived using the
identity 

ax2 + bx + c = a(x – α) (x – ß).

The corresponding relations for cubic equations should also be derived and
the general result indicated. Particular examples should not involve
polynomial equations of degree above four.

16.4 Discussion may be confined to the following two methods.

(i) Halving the interval. Suppose we have two values of x, say x = x1
and x = x2, such that the polynomial P(x) is positive for x = x1, ie
P(x1) > 0, and is negative for x = x2, ie P(x2) < 0. Since P(x) is a
continuous function, there is a root of P(x) in the interval x1 < x < x2.

Now compute the midpoint x3 = (x1 + x2) and the corresponding

polynomial value P(x3). If P(x3) = 0, x3 is the desired root. If 
P(x3) > 0, we replace x1 by x3 and repeat the process using
x3 and x2. If P(x3) < 0, we replace x2 by x3 and repeat the process.

1
2

R x
A x

( )
( )

P x
A x

( )
( )
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E (ii) Newton’s method. Suppose z is close to a root of P(x) = 0. The
tangent to y = P(x) at x = z has the equation y – P(z) = P'(z) (x – z).
This tangent intersects the x-axis at x = z – P(z)/P'(z). If the original
value of z was sufficiently close to the desired root, and if certain
other conditions are satisfied, the new value x is even closer. We
repeat the process to converge in general to the desired root.
Newton’s method is in principle faster (requires fewer steps for a
given accuracy) than halving the interval, but some care must be
exercised in applying it. A check that the values obtained do appear
to be approaching a root should be made by calculating the
corresponding function values.

Both of these methods may be applied to find approximate roots of
equations involving other types of functions.

E 17. Binomial Theorem
17.1 The binomial expansion is introduced by example, using n = 1,2,3,4. The

Pascal triangle is constructed.

We observe that for any integral n, no matter how large, (1 + x)n is a
polynomial of degree n in the variable x. The (so far unknown) coefficients
in this polynomial must be labelled by some symbol; we choose ‘C’ for
‘coefficient’ and write the power of x as a right subscript k, the power n as
a left superscript, ie nCk is by definition the coefficient of xk in (1 + x)n:

(1 + x)n = nC0 + nC1x + nC2x + … nCnxn.

We extend this identity to an expansion of (a + u)n by putting x = u/a, and
multiplying both sides by an; the result is:

(a + u)n = nC0an + nC1an–1u + nC2an–2u2 + … + nCnun.

Proof of the Pascal triangle relations

There are two separate relations, (i) for the outer coefficients, and (ii) for
the others.

In the above expansion for (a + u)n, put a = 1, u = 0 on both sides to get
nC0 =1. Put a = 0, u = 1 on both sides to get nCn = 1.

Next we write down (1 + x)n–1 and below it, the same expression multiplied
by x; adding them together, and collecting terms of the same degree in x,
we obtain

(1 + x)n–1 + x (1 + x)n–1 = n–1C0 + (n–1C0 + n –1C1)x + 

(n–1C1 + n–1C2)x2 + … + (n–1Cn–2 + n–1Cn–1)xn–1 + n–1Cn–1xn.

However, the left side is obviously equal to (1 + x)n. We now use the fact
(which we have proved as a theorem only for the special case of second
degree polynomials) that two polynomials are equal for all values of x if
and only if all corresponding coefficients are equal. Comparing the right
side above with the earlier expansion of (1 + x)n, we immediately deduce:

nCk = n–1Ck–1 + n–1Ck for 1 ≤ k ≤ n – 1.



E 17.2 Proof by Mathematical Induction of the formula for nCk

Let us consider (1 + x)4 = 1 + 4x + 6x2 + 4x3 + x4. The ratios of successive
coefficients are: 4/1 = n/1; 6/4 = 3/2 = (n – 1)/2; 4/6 = 2/3 = (n – 2)/3; and
finally, 1/4 = (n – 3)/4. Thus the coefficients in this formula are, going
from left to right,

1, , , , and 

This leads us to guess at the general formula:

statement S(n): nCk = for 1 ≤ k ≤ n.

The remaining coefficient, nC0, has already been shown to equal 1 in 17.1.
It should also be noted at this stage that our guess gives the correct, and
already proved, answer for nCn. We now use mathematical induction to
prove this result.

Step 1. Statement S (2) is true, by inspection of (1 + x)2.

Step 2. We assume statement S(n – 1) to be true, and deduce from it the
truth of S(n).

The easiest case is k = 1. We assume the truth of n–1C1 = (n – 1)/1, which is
part of statement S(n –1) and we already know, from 17.1, that n–1C0 = 1.
Adding these two, and using the Pascal triangle relation proved in 17.1, we
obtain nC1 = 1 + (n – 1) = n = n/1, in agreement with statement S(n).

For k ≥ 2, we have k – 1 ≥ 1 and we assume the truth of the relations:

n–1Ck–1 = and

n–1Ck–1 = ,

both of which are part of statement S(n-1). We add these two numbers and
use the Pascal triangle relation to get

nCk = n–1Ck–1 + n–1Ck = .

Since the square bracket equals n/k, this is precisely the same as statement
S(n), which is hereby proved for all k ≥ 2, and has been proved for k = 1
above. The proof by induction is therefore complete.

17.3 The student should be able to use the general formula

(a + b)n = akbn–k.

For example, find the coefficient of x3 when (x2 – 2/x)3N is expanded in
powers of x, given that N is a positive integer.

The typical term is x2k (–2/x)3N–k, in which the power of x is 

3k – 3N. Taking k = N + 1, we find that the required coefficient is

(–2)2N–1 .
3
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E
When a and b are positive, consideration of the ratio of successive terms in
the expansion of (a + b)n makes it easy to determine the greatest term in
that expansion, eg

find the greatest coefficient in the expansion of (3 + 5x)20.

Writing (3 + 5x)20 = tkxk, we have = , which

exceeds one for 1 ≤ k ≤ 12 and is less than one thereafter. Hence the

greatest coefficient is t13 = 51337.

The substitution, x = 1, in the expansion of (1 + x)n gives the formula

2n = . (This can, of course, be given a direct combinatorial

interpretation as the equality of two methods of enumerating the subsets of
a set of n elements.) We may use functional properties of (1 + x)n to sum
other finite series involving binomial coefficients. For example,
consideration of the coefficient of xn on each side of the identity,
(1 + x)n(1 + x)n ≡ (1 + x)2n, gives the formula

= = .

Differentiation or integration is also possible, eg differentiate both sides of
the identity

(1 + x)2n ≡ xk,

and show that

k = n4n.

E 18. Permutations, Combinations and Further Probability
18. It is natural to introduce this topic in the context of enumerating the

outcomes of random experiments, so it is preferable that students have
previously developed some familiarity with the material on probability
theory.

18.1 We start with n different objects and choose k of them one after another.
(An ordered sample without replacement.) Since the first can be chosen 
in n ways, then the next in (n – 1) ways and so on, this can be done in 
n.(n – 1).(n – 2) ... (n – k + 1) ways. In other words, we have found the
number of ways of arranging n objects k at a time and this number is 
also written nPk. In the special case where k = n, we are dealing with the
total number of arrangements or permutations of n distinct objects. This
number is
n! = nPn = n × (n – 1) × (n – 2) × … × 2 × 1.
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E Using factorial notation and the convention 0! = 1,
nPk = n!/(n – k) ! for k = 0, 1, … , n.

Now suppose we ignore the order in which the k objects were chosen from
our pool of n objects. We wish to find the number, nCk, of ways of choosing
a collection of k objects from a collection of n objects. One way to do this is
to note that choosing an ordered sample is equivalent to choosing an
unordered sample then ordering it. An ordered sample can be chosen in nPk

ways, the second procedure can be carried out in nCk × k! ways. Therefore
nCk = nPk/k! = .

For instance, in Lotto, the number of ways of selecting six of the numbers
1 to 40 is 40C6. In TAB betting the trifecta pays on the first three horses in
correct order, the quinella pays on the first two horses in either order. In a
12 horse race the number of possible trifecta combinations is 12P3 and the
number of possible quinella combinations is 12C2. Note that in the case of
Lotto the enumerated outcomes are equally likely, while in the other cases
the outcomes are (presumably) not equally likely.

At this stage it is advisable to make the connection with the work on the
binomial expansion. Since the coefficient of xk in the expansion of (1 + x)n

is equal to the number of ways of choosing k xs from the n factors (1 + x),
this coefficient is (by the above) just

nCk = .

giving an alternative proof of the result in 17.2.

It is also interesting to give combinatorial proofs of the relations
nCk = nCn–k’

n+1Ck = nCk + nCk–1.

When we select k objects from n, we discard n – k objects. Hence the
number of ways of selecting k objects from n equals the number of ways of
selecting n – k objects from n, and this shows that

nCk = nCn–k.

Let us add a new object to our original pool of n objects. Now we select k
objects from the new pool (as we can in n+1Ck ways). Either our selection
contains the new object or it does not. In the first case we are effectively
choosing k – 1 objects from the original n (and this arises in nCk–1 ways)
while in the second case we are choosing k objects from the original n (and
this occurs in nCk ways). It follows that

n+1Ck = nCk + nCk–1.

The following are typical problems.

In choosing three letters from the word PROBING, and assuming each
choice is equally likely, what is the probability of choosing just one vowel?

The total number of choices is 7C3 = 35. The number of ways of choosing
one vowel and two consonants is 2C1 × 5C2 = 20 .Thus the required
probability is 4/7.
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E How many numbers greater than 5000 can be formed with the digits 2, 3,
5, 7, 9 if no digit is repeated?

First there are 5P4 five-digit numbers. We can also choose a four-digit
number, but then the first digit must be 5, 7 or 9, so there are 3 × 4P3
possible numbers of this type. The total number of possibilities is 
120 + 72 = 192.

In how many ways can the letters of EERIE be arranged in line?

5 distinct letters admit 5! arrangements and 3 distinct letters admit 
3! arrangements. Thus the answer is 5!/3!.

In how many ways can the numbers 1, 2, 3, 4, 5, 6 be arranged around a
circle? How many of these arrangements have at least two even numbers
together?

The first number may be placed arbitrarily. The next can be placed in 
5 ways, the next in 4 ways, the next in 3 ways and so on; there are 
5.4.3.2 = 120 arrangements. There are always at least two adjacent even
numbers unless the numbers are arranged odd, even, odd, even, odd, even
as we go round. Place the odd numbers in 2 ways. Now insert the even
numbers in the available gaps in 3! ways. This gives 12 alternating
arrangements and hence 108 = 120 – 12 arrangements of the required kind.

18.2 Suppose that a coin gives heads (H) with probability p and tails (T) with
probability q = 1 – p. Representing the outcomes of three tosses on a tree
diagram spreading vertically downwards, we find that the bottom row has
the entries HHH, HHT, HTH, HTT, THH, THT, TTH, TTT with respective
probabilities p3, p2q, p2q, pq2, p2q, pq2, pq2, q3. The number X of heads
appearing in these three tosses has a frequency distribution given by 
P(X = 0) = q3, P(X = 1) = 3pq2, P(X = 2) = 3p2q, P(X = 3) = p3 and it is
easy (and helpful) to draw a histogram for various values of p.

It is straightforward to generalise to the case of n tosses, where the
outcomes are represented by strings of length n using the letters H, T and
each string arises with probability prqn–r, where r is the number of times H

appears. Because there are strings with r occurrences of H and n – r

occurrences of T, we see that

P(X = r) = prqn–r,

where X denotes the number of heads which appear in n tosses. X is said to
have a binomial distribution. (Observe that the statement

P(X = r) = 1

can be rewritten in the form

prqn–r = (p + q)n = 1.)
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E The binomial distribution can be used to model repeated trials of any
experiment with precisely two outcomes. The probability p may be known
in advance, eg sampling with replacement from a box with two red and
three white balls (p = 2/5 if H represents drawing a red ball); or estimated
from frequency considerations, eg guessing the sex of a baby (p is slightly
greater than if H represents the birth of a girl).

The following are typical examples.

It is known that x% of the bolts produced by a machine are faulty. What is
the probability that in a random sample of 4 bolts:

(a) no bolts are defective?

(b) precisely one bolt is defective?

(c) at most, two bolts are defective?

(Express all answers in the form of 10–8R(x), where R is a polynomial
which need not be simplified.)

Let p = x/100 denote the probability that a bolt is defective and q = 1 – p.

Then the required probabilities are respectively q4, pq3, and the 

sum of the first two together with p2q2. Thus we can write the answers
as

(a) 10–8 (100 – x)4,

(b) 10–8 × 4x (100 – x)3

(c) 10–8 × {(100 –x)4 + 4x(100 – x)3 + 6x2 (100 – x)2}.

On the average, batsmen in a certain cricket team make a scoring shot on
every third ball. Estimate how many six-ball overs with precisely two
scoring shots occur in a thousand overs of batting by that team.

We take p = to represent the probability of a scoring shot on a given ball.

The probability that a random over contains precisely 2 scoring shots is

. We multiply this by 103 and (rounding off to the nearest

integer) estimate that there are 329 overs.
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